Chromosomal rearrangements and evolution of recombination: comparison of chiasma distribution patterns in standard and robertsonian populations of the house mouse (original) (raw)

Abstract

The effects of chromosomal rearrangements on recombination rates were tested by the analysis of chiasma distribution patterns in wild house mice. Males and females of two chromosomal races from Tunisia differing by nine pairs of Robertsonian (Rb) fusions (standard all-acrocentric, 2N = 40 and 2N = 22) were studied. A significant decrease in chiasma number (CN) was observed in Rb mice compared to standard ones for both sexes. The difference in CN was due to a reduction in the number of proximal chiasmata and was associated with an overall more distal redistribution. These features were related to distance of chiasmata to the centromere, suggesting that the centromere effect was more pronounced in Rb fusions than in acrocentric chromosomes. These modifications were interpreted in terms of structural meiotic constraints, although genic factors were likely involved in patterning the observed differences between sexes within races. Thus, the change in chromosomal structure in Rb mice was associated with a generalized decrease in recombination due to a reduction in diploid number, a lower CN, and a decrease in the efficiency of recombination. The effects of such modifications on patterns of genic diversity are discussed in the light of models of evolution of recombination.

Full Text

The Full Text of this article is available as a PDF (175.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. K., Reeves A., Webb L. M., Ashley T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics. 1999 Apr;151(4):1569–1579. doi: 10.1093/genetics/151.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antezana M. A., Hudson R. R. Before crossing over: the advantages of eukaryotic sex in genomes lacking chiasmatic recombination. Genet Res. 1997 Aug;70(1):7–25. doi: 10.1017/s0016672397002875. [DOI] [PubMed] [Google Scholar]
  3. Ashley T., Cacheiro N. L., Russell L. B., Ward D. C. Molecular characterization of a pericentric inversion in mouse chromosome 8 implicates telomeres as promoters of meiotic recombination. Chromosoma. 1993 Jan;102(2):112–120. doi: 10.1007/BF00356028. [DOI] [PubMed] [Google Scholar]
  4. Beadle G. W. A Possible Influence of the Spindle Fibre on Crossing-Over in Drosophila. Proc Natl Acad Sci U S A. 1932 Feb;18(2):160–165. doi: 10.1073/pnas.18.2.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bidau C. J., Giménez M. D., Palmer C. L., Searle J. B. The effects of Robertsonian fusions on chiasma frequency and distribution in the house mouse (Mus musculus domesticus) from a hybrid zone in northern Scotland. Heredity (Edinb) 2001 Sep;87(Pt 3):305–313. doi: 10.1046/j.1365-2540.2001.00877.x. [DOI] [PubMed] [Google Scholar]
  6. Britton-Davidian J., Nadeau J. H., Croset H., Thaler L. Genic differentiation and origin of Robertsonian populations of the house mouse (Mus musculus domesticus Rutty). Genet Res. 1989 Feb;53(1):29–44. doi: 10.1017/s0016672300027841. [DOI] [PubMed] [Google Scholar]
  7. Broman K. W., Weber J. L. Characterization of human crossover interference. Am J Hum Genet. 2000 May 8;66(6):1911–1926. doi: 10.1086/302923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burt A. Perspective: sex, recombination, and the efficacy of selection--was Weismann right? Evolution. 2000 Apr;54(2):337–351. doi: 10.1111/j.0014-3820.2000.tb00038.x. [DOI] [PubMed] [Google Scholar]
  9. Castiglia Riccardo, Capanna Ernesto. Chiasma repatterning across a chromosomal hybrid zone between chromosomal races of Mus musculus domesticus. Genetica. 2002;114(1):35–40. doi: 10.1023/a:1014626330022. [DOI] [PubMed] [Google Scholar]
  10. Chatti N., Ganem G., Benzekri K., Catalan J., Britton-Davidian J., Saïd K. Microgeographical distribution of two chromosomal races of house mice in Tunisia: pattern and origin of habitat partitioning. Proc Biol Sci. 1999 Aug 7;266(1428):1561–1569. doi: 10.1098/rspb.1999.0816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Choo K. H. Why is the centromere so cold? Genome Res. 1998 Feb;8(2):81–82. doi: 10.1101/gr.8.2.81. [DOI] [PubMed] [Google Scholar]
  12. Davisson M. T., Akeson E. C. Recombination suppression by heterozygous Robertsonian chromosomes in the mouse. Genetics. 1993 Mar;133(3):649–667. doi: 10.1093/genetics/133.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dutrillaux B. Le rôle des chromosomes dans l'évolution: une nouvelle interprétation. Ann Genet. 1986;29(2):69–75. [PubMed] [Google Scholar]
  14. EVANS E. P., BRECKON G., FORD C. E. AN AIR-DRYING METHOD FOR MEIOTIC PREPARATIONS FROM MAMMALIAN TESTES. Cytogenetics. 1964;3:289–294. doi: 10.1159/000129818. [DOI] [PubMed] [Google Scholar]
  15. Eyre-Walker A. Recombination and mammalian genome evolution. Proc Biol Sci. 1993 Jun 22;252(1335):237–243. doi: 10.1098/rspb.1993.0071. [DOI] [PubMed] [Google Scholar]
  16. Feldman M. W., Christiansen F. B., Brooks L. D. Evolution of recombination in a constant environment. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4838–4841. doi: 10.1073/pnas.77.8.4838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garagna S., Broccoli D., Redi C. A., Searle J. B., Cooke H. J., Capanna E. Robertsonian metacentrics of the house mouse lose telomeric sequences but retain some minor satellite DNA in the pericentromeric area. Chromosoma. 1995 Jul;103(10):685–692. doi: 10.1007/BF00344229. [DOI] [PubMed] [Google Scholar]
  18. Gorlov I. P., Zhelezova A. I., Gorlova OYu Sex differences in chiasma distribution along two marked mouse chromosomes: differences in chiasma distribution as a reason for sex differences in recombination frequency. Genet Res. 1994 Dec;64(3):161–166. doi: 10.1017/s0016672300032821. [DOI] [PubMed] [Google Scholar]
  19. Hale D. W. Heterosynapsis and suppression of chiasmata within heterozygous pericentric inversions of the Sitka deer mouse. Chromosoma. 1986;94(6):425–432. doi: 10.1007/BF00292751. [DOI] [PubMed] [Google Scholar]
  20. Hassold T., Sherman S., Hunt P. Counting cross-overs: characterizing meiotic recombination in mammals. Hum Mol Genet. 2000 Oct;9(16):2409–2419. doi: 10.1093/hmg/9.16.2409. [DOI] [PubMed] [Google Scholar]
  21. Hawley R. S., McKim K. S., Arbel T. Meiotic segregation in Drosophila melanogaster females: molecules, mechanisms, and myths. Annu Rev Genet. 1993;27:281–317. doi: 10.1146/annurev.ge.27.120193.001433. [DOI] [PubMed] [Google Scholar]
  22. Hewitt G. M. An interchange which raises chiasma frequency. Chromosoma. 1967;21(3):285–295. [PubMed] [Google Scholar]
  23. Hultén M. A., Tease C., Lawrie N. M. Chiasma-based genetic map of the mouse X chromosome. Chromosoma. 1995 Nov;104(3):223–227. doi: 10.1007/BF00352187. [DOI] [PubMed] [Google Scholar]
  24. Kaback D. B. Chromosome-size dependent control of meiotic recombination in humans. Nat Genet. 1996 May;13(1):20–21. doi: 10.1038/ng0596-20. [DOI] [PubMed] [Google Scholar]
  25. Kaback D. B., Guacci V., Barber D., Mahon J. W. Chromosome size-dependent control of meiotic recombination. Science. 1992 Apr 10;256(5054):228–232. doi: 10.1126/science.1566070. [DOI] [PubMed] [Google Scholar]
  26. Kanda N., Kato H. Analysis of crossing over in mouse meiotic cells by BrdU labelling technique. Chromosoma. 1980;78(1):113–121. doi: 10.1007/BF00291910. [DOI] [PubMed] [Google Scholar]
  27. King J., Roberts L. A., Kearsey M. J., Thomas H. M., Jones R. N., Huang L., Armstead I. P., Morgan W. G., King I. P. A demonstration of a 1:1 correspondence between chiasma frequency and recombination using a Lolium perenne/Festuca pratensis substitution. Genetics. 2002 May;161(1):307–314. doi: 10.1093/genetics/161.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Koehler K. E., Hawley R. S., Sherman S., Hassold T. Recombination and nondisjunction in humans and flies. Hum Mol Genet. 1996;5(Spec No):1495–1504. doi: 10.1093/hmg/5.supplement_1.1495. [DOI] [PubMed] [Google Scholar]
  29. Lamb N. E., Feingold E., Sherman S. L. Estimating meiotic exchange patterns from recombination data: an application to humans. Genetics. 1997 Jul;146(3):1011–1017. doi: 10.1093/genetics/146.3.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Laurie D. A., Hultén M. A. Further studies on bivalent chiasma frequency in human males with normal karyotypes. Ann Hum Genet. 1985 Jul;49(Pt 3):189–201. doi: 10.1111/j.1469-1809.1985.tb01693.x. [DOI] [PubMed] [Google Scholar]
  31. Lawrie N. M., Tease C., Hultén M. A. Chiasma frequency, distribution and interference maps of mouse autosomes. Chromosoma. 1995 Dec;104(4):308–314. doi: 10.1007/BF00352262. [DOI] [PubMed] [Google Scholar]
  32. Lenormand T., Otto S. P. The evolution of recombination in a heterogeneous environment. Genetics. 2000 Sep;156(1):423–438. doi: 10.1093/genetics/156.1.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Maguire M. P. Is the synaptonemal complex a disjunction machine? J Hered. 1995 Sep-Oct;86(5):330–340. doi: 10.1093/oxfordjournals.jhered.a111600. [DOI] [PubMed] [Google Scholar]
  34. Maudlin I., Evans E. P. Chiasma distribution in mouse oocytes during diakinesis. Chromosoma. 1980;80(1):49–56. doi: 10.1007/BF00327565. [DOI] [PubMed] [Google Scholar]
  35. Moens P. B., Spyropoulos B. Immunocytology of chiasmata and chromosomal disjunction at mouse meiosis. Chromosoma. 1995 Nov;104(3):175–182. doi: 10.1007/BF00352182. [DOI] [PubMed] [Google Scholar]
  36. Nachman M. W., Churchill G. A. Heterogeneity in rates of recombination across the mouse genome. Genetics. 1996 Feb;142(2):537–548. doi: 10.1093/genetics/142.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nachman M. W. Single nucleotide polymorphisms and recombination rate in humans. Trends Genet. 2001 Sep;17(9):481–485. doi: 10.1016/s0168-9525(01)02409-x. [DOI] [PubMed] [Google Scholar]
  38. Nicklas R. B. How cells get the right chromosomes. Science. 1997 Jan 31;275(5300):632–637. doi: 10.1126/science.275.5300.632. [DOI] [PubMed] [Google Scholar]
  39. Noor M. A., Grams K. L., Bertucci L. A., Almendarez Y., Reiland J., Smith K. R. The genetics of reproductive isolation and the potential for gene exchange between Drosophila pseudoobscura and D. persimilis via backcross hybrid males. Evolution. 2001 Mar;55(3):512–521. doi: 10.1554/0014-3820(2001)055[0512:tgoria]2.0.co;2. [DOI] [PubMed] [Google Scholar]
  40. Nordborg M., Charlesworth B., Charlesworth D. The effect of recombination on background selection. Genet Res. 1996 Apr;67(2):159–174. doi: 10.1017/s0016672300033619. [DOI] [PubMed] [Google Scholar]
  41. Paliulis L. V., Nicklas R. B. The reduction of chromosome number in meiosis is determined by properties built into the chromosomes. J Cell Biol. 2000 Sep 18;150(6):1223–1232. doi: 10.1083/jcb.150.6.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pardo-Manuel de Villena F., Sapienza C. Recombination is proportional to the number of chromosome arms in mammals. Mamm Genome. 2001 Apr;12(4):318–322. doi: 10.1007/s003350020005. [DOI] [PubMed] [Google Scholar]
  43. Petes T. D. Meiotic recombination hot spots and cold spots. Nat Rev Genet. 2001 May;2(5):360–369. doi: 10.1038/35072078. [DOI] [PubMed] [Google Scholar]
  44. Polani P. E. Centromere localization at meiosis and the position of chiasmata in the male and female mouse. Chromosoma. 1972;36(4):343–374. doi: 10.1007/BF00336793. [DOI] [PubMed] [Google Scholar]
  45. Polani P. E., Jagiello G. M. Chiasmata, meiotic univalents, and age in relation to aneuploid imbalance in mice. Cytogenet Cell Genet. 1976;16(6):505–529. doi: 10.1159/000130668. [DOI] [PubMed] [Google Scholar]
  46. Quinn P., Barros C., Whittingham D. G. Preservation of hamster oocytes to assay the fertilizing capacity of human spermatozoa. J Reprod Fertil. 1982 Sep;66(1):161–168. doi: 10.1530/jrf.0.0660161. [DOI] [PubMed] [Google Scholar]
  47. Qumsiyeh M. B. Evolution of number and morphology of mammalian chromosomes. J Hered. 1994 Nov-Dec;85(6):455–465. doi: 10.1093/oxfordjournals.jhered.a111501. [DOI] [PubMed] [Google Scholar]
  48. Reed K. M., Sites J. W., Jr, Greenbaum I. F. Chromosomal synapsis and the meiotic process in male mesquite lizards, Sceloporus grammicus complex. Genome. 1992 Jun;35(3):398–408. doi: 10.1139/g92-060. [DOI] [PubMed] [Google Scholar]
  49. Rieseberg L. H. Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001 Jul 1;16(7):351–358. doi: 10.1016/s0169-5347(01)02187-5. [DOI] [PubMed] [Google Scholar]
  50. Riginos C., Nachman M. W. The origin of a Robertsonian chromosomal translocation in house mice inferred from linked microsatellite markers. Mol Biol Evol. 1999 Dec;16(12):1763–1773. doi: 10.1093/oxfordjournals.molbev.a026088. [DOI] [PubMed] [Google Scholar]
  51. Roeder G. S. Chromosome synapsis and genetic recombination: their roles in meiotic chromosome segregation. Trends Genet. 1990 Dec;6(12):385–389. doi: 10.1016/0168-9525(90)90297-j. [DOI] [PubMed] [Google Scholar]
  52. Said K., Saad A., Auffray J. C., Britton-Davidian J. Fertility estimates in the Tunisian all-acrocentric and Robertsonian populations of the house mouse and their chromosomal hybrids. Heredity (Edinb) 1993 Nov;71(Pt 5):532–538. doi: 10.1038/hdy.1993.172. [DOI] [PubMed] [Google Scholar]
  53. Scherthan H., Weich S., Schwegler H., Heyting C., Härle M., Cremer T. Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol. 1996 Sep;134(5):1109–1125. doi: 10.1083/jcb.134.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Soriano P., Keitges E. A., Schorderet D. F., Harbers K., Gartler S. M., Jaenisch R. High rate of recombination and double crossovers in the mouse pseudoautosomal region during male meiosis. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7218–7220. doi: 10.1073/pnas.84.20.7218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Speed R. M. The effects of ageing on the meiotic chromosomes of male and female mice. Chromosoma. 1977 Nov 30;64(3):241–254. doi: 10.1007/BF00328080. [DOI] [PubMed] [Google Scholar]
  56. Sumner A. T. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res. 1972 Nov;75(1):304–306. doi: 10.1016/0014-4827(72)90558-7. [DOI] [PubMed] [Google Scholar]
  57. Tease C., Jones G. H. Do chiasmata disappear? An examination of whether closely spaced chiasmata are liable to reduction or loss. Chromosome Res. 1995 May;3(3):162–168. doi: 10.1007/BF00710709. [DOI] [PubMed] [Google Scholar]
  58. Trickett A. J., Butlin R. K. Recombination suppressors and the evolution of new species. Heredity (Edinb) 1994 Oct;73(Pt 4):339–345. doi: 10.1038/hdy.1994.180. [DOI] [PubMed] [Google Scholar]
  59. True J. R., Mercer J. M., Laurie C. C. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics. 1996 Feb;142(2):507–523. doi: 10.1093/genetics/142.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yamamoto M., Miklos G. L. Genetic studies on heterochromatin in Drosophila melanogaster and their implications for the functions of satellite DNA. Chromosoma. 1978 Mar 22;66(1):71–98. doi: 10.1007/BF00285817. [DOI] [PubMed] [Google Scholar]
  61. Zhivotovsky L. A., Feldman M. W., Christiansen F. B. Evolution of recombination among multiple selected loci: a generalized reduction principle. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1079–1083. doi: 10.1073/pnas.91.3.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Zickler D., Kleckner N. Meiotic chromosomes: integrating structure and function. Annu Rev Genet. 1999;33:603–754. doi: 10.1146/annurev.genet.33.1.603. [DOI] [PubMed] [Google Scholar]
  63. Zickler D., Kleckner N. The leptotene-zygotene transition of meiosis. Annu Rev Genet. 1998;32:619–697. doi: 10.1146/annurev.genet.32.1.619. [DOI] [PubMed] [Google Scholar]