Horizontal acquisition of divergent chromosomal DNA in bacteria: effects of mutator phenotypes (original) (raw)

Abstract

We examine the potential beneficial effects of the expanded access to environmental DNA offered by mutators on the adaptive potential of bacterial populations. Using parameters from published studies of recombination in E. coli, we find that the presence of mutators has the potential to greatly enhance bacterial population adaptation when compared to populations without mutators. In one specific example, for which three specific amino acid substitutions are required for adaptation to occur in a 300-amino-acid protein, we found a 3500-fold increase in the rate of adaptation. The probability of a beneficial acquisition decreased if more amino acid changes, or integration of longer DNA fragments, were required for adaptation. The model also predicts that mutators are more likely than nonmutator phenotypes to acquire genetic variability from a more diverged set of donor bacteria. Bacterial populations harboring mutators in a sequence heterogeneous environment are predicted to acquire most of their DNA conferring adaptation in the range of 13-30% divergence, whereas nonmutator phenotypes become adapted after recombining with more homogeneous sequences of 7-21% divergence. We conclude that mutators can accelerate bacterial adaptation when desired genetic variability is present within DNA fragments of up to approximately 30% divergence.

Full Text

The Full Text of this article is available as a PDF (139.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bessen D. E., Hollingshead S. K. Allelic polymorphism of emm loci provides evidence for horizontal gene spread in group A streptococci. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3280–3284. doi: 10.1073/pnas.91.8.3280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowler L. D., Zhang Q. Y., Riou J. Y., Spratt B. G. Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation. J Bacteriol. 1994 Jan;176(2):333–337. doi: 10.1128/jb.176.2.333-337.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown E. W., LeClerc J. E., Li B., Payne W. L., Cebula T. A. Phylogenetic evidence for horizontal transfer of mutS alleles among naturally occurring Escherichia coli strains. J Bacteriol. 2001 Mar;183(5):1631–1644. doi: 10.1128/JB.183.5.1631-1644.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davison J. Genetic exchange between bacteria in the environment. Plasmid. 1999 Sep;42(2):73–91. doi: 10.1006/plas.1999.1421. [DOI] [PubMed] [Google Scholar]
  5. Denamur E., Lecointre G., Darlu P., Tenaillon O., Acquaviva C., Sayada C., Sunjevaric I., Rothstein R., Elion J., Taddei F. Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell. 2000 Nov 22;103(5):711–721. doi: 10.1016/s0092-8674(00)00175-6. [DOI] [PubMed] [Google Scholar]
  6. Dowson C. G., Hutchison A., Brannigan J. A., George R. C., Hansman D., Liñares J., Tomasz A., Smith J. M., Spratt B. G. Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8842–8846. doi: 10.1073/pnas.86.22.8842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dowson C. G., Hutchison A., Woodford N., Johnson A. P., George R. C., Spratt B. G. Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5858–5862. doi: 10.1073/pnas.87.15.5858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drake J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160–7164. doi: 10.1073/pnas.88.16.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drake J. W., Charlesworth B., Charlesworth D., Crow J. F. Rates of spontaneous mutation. Genetics. 1998 Apr;148(4):1667–1686. doi: 10.1093/genetics/148.4.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feng D. F., Cho G., Doolittle R. F. Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13028–13033. doi: 10.1073/pnas.94.24.13028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Funchain P., Yeung A., Stewart J. L., Lin R., Slupska M. M., Miller J. H. The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics. 2000 Mar;154(3):959–970. doi: 10.1093/genetics/154.3.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Funchain P., Yeung A., Stewart J., Clendenin W. M., Miller J. H. Amplification of mutator cells in a population as a result of horizontal transfer. J Bacteriol. 2001 Jun;183(12):3737–3741. doi: 10.1128/JB.183.12.3737-3741.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guttman D. S., Dykhuizen D. E. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science. 1994 Nov 25;266(5189):1380–1383. doi: 10.1126/science.7973728. [DOI] [PubMed] [Google Scholar]
  14. Jain R., Rivera M. C., Lake J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3801–3806. doi: 10.1073/pnas.96.7.3801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kroll J. S., Wilks K. E., Farrant J. L., Langford P. R. Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12381–12385. doi: 10.1073/pnas.95.21.12381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LeClerc J. E., Li B., Payne W. L., Cebula T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science. 1996 Nov 15;274(5290):1208–1211. doi: 10.1126/science.274.5290.1208. [DOI] [PubMed] [Google Scholar]
  17. Majewski J., Cohan F. M. DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics. 1999 Dec;153(4):1525–1533. doi: 10.1093/genetics/153.4.1525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Majewski J., Cohan F. M. The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics. 1998 Jan;148(1):13–18. doi: 10.1093/genetics/148.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Majewski J., Zawadzki P., Pickerill P., Cohan F. M., Dowson C. G. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol. 2000 Feb;182(4):1016–1023. doi: 10.1128/jb.182.4.1016-1023.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mao E. F., Lane L., Lee J., Miller J. H. Proliferation of mutators in A cell population. J Bacteriol. 1997 Jan;179(2):417–422. doi: 10.1128/jb.179.2.417-422.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matic I., Radman M., Taddei F., Picard B., Doit C., Bingen E., Denamur E., Elion J. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science. 1997 Sep 19;277(5333):1833–1834. doi: 10.1126/science.277.5333.1833. [DOI] [PubMed] [Google Scholar]
  22. Matic I., Rayssiguier C., Radman M. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell. 1995 Feb 10;80(3):507–515. doi: 10.1016/0092-8674(95)90501-4. [DOI] [PubMed] [Google Scholar]
  23. Nielsen K. M., Smalla K., van Elsas J. D. Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil microcosms. Appl Environ Microbiol. 2000 Jan;66(1):206–212. doi: 10.1128/aem.66.1.206-212.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nielsen K. M., van Weerelt M. D., Berg T. N., Bones A. M., Hagler A. N., van Elsas J. D. Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl Environ Microbiol. 1997 May;63(5):1945–1952. doi: 10.1128/aem.63.5.1945-1952.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Notley-McRobb Lucinda, Seeto Shona, Ferenci Thomas. Enrichment and elimination of mutY mutators in Escherichia coli populations. Genetics. 2002 Nov;162(3):1055–1062. doi: 10.1093/genetics/162.3.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ochman H., Lawrence J. G., Groisman E. A. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000 May 18;405(6784):299–304. doi: 10.1038/35012500. [DOI] [PubMed] [Google Scholar]
  27. Oliver A., Cantón R., Campo P., Baquero F., Blázquez J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science. 2000 May 19;288(5469):1251–1254. doi: 10.1126/science.288.5469.1251. [DOI] [PubMed] [Google Scholar]
  28. Orr H. A. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics. 1995 Apr;139(4):1805–1813. doi: 10.1093/genetics/139.4.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rivera M. C., Jain R., Moore J. E., Lake J. A. Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6239–6244. doi: 10.1073/pnas.95.11.6239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith J. M., Feil E. J., Smith N. H. Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays. 2000 Dec;22(12):1115–1122. doi: 10.1002/1521-1878(200012)22:12<1115::AID-BIES9>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  31. Spratt B. G. Resistance to antibiotics mediated by target alterations. Science. 1994 Apr 15;264(5157):388–393. doi: 10.1126/science.8153626. [DOI] [PubMed] [Google Scholar]
  32. Taddei F., Matic I., Godelle B., Radman M. To be a mutator, or how pathogenic and commensal bacteria can evolve rapidly. Trends Microbiol. 1997 Nov;5(11):427–429. doi: 10.1016/S0966-842X(97)01157-8. [DOI] [PubMed] [Google Scholar]
  33. Taddei F., Radman M., Maynard-Smith J., Toupance B., Gouyon P. H., Godelle B. Role of mutator alleles in adaptive evolution. Nature. 1997 Jun 12;387(6634):700–702. doi: 10.1038/42696. [DOI] [PubMed] [Google Scholar]
  34. Tenaillon O., Le Nagard H., Godelle B., Taddei F. Mutators and sex in bacteria: conflict between adaptive strategies. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10465–10470. doi: 10.1073/pnas.180063397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tenaillon O., Toupance B., Le Nagard H., Taddei F., Godelle B. Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria. Genetics. 1999 Jun;152(2):485–493. doi: 10.1093/genetics/152.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vulić M., Dionisio F., Taddei F., Radman M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9763–9767. doi: 10.1073/pnas.94.18.9763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Watt V. M., Ingles C. J., Urdea M. S., Rutter W. J. Homology requirements for recombination in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4768–4772. doi: 10.1073/pnas.82.14.4768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zawadzki P., Cohan F. M. The size and continuity of DNA segments integrated in Bacillus transformation. Genetics. 1995 Dec;141(4):1231–1243. doi: 10.1093/genetics/141.4.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zawadzki P., Roberts M. S., Cohan F. M. The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics. 1995 Jul;140(3):917–932. doi: 10.1093/genetics/140.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]