Transplanting oligodendrocyte progenitors into the adult CNS (original) (raw)

Abstract

This review covers a number of aspects of the behaviour of oligodendrocyte progenitors following transplantation into the adult CNS. First, an account is given of the ability of transplanted oligodendrocyte progenitors, grown in tissue culture in the presence of PDGF and bFGF, to extensively remyelinate focal areas of persistent demyelination. Secondly, we describe how transplanted clonal cell lines of oligodendrocyte progenitors will differentiate into astrocytes as well oligodendrocytes following transplantation into pathological environments in which both oligodendrocytes and astrocytes are absent, thereby manifesting the bipotentially demonstrable in vitro but not during development. Finally, a series of studies examining the migratory behaviour of transplanted oligodendrocyte progenitors (modelled using the oliodendrocyte progenitor cell line CG4) are described. These show that CG4 cells do not survive (or migrate) when transplanted into the normal adult CNS. However, if they are transplanted into CNS tissue that has previously been exposed to 40 Gy of x-irradiation then transplanted CG4 cells survive, divide and migrate over large distances. Moreover, within an x-irradiated environment, migrating transplanted CG4 cells are able to enter remotely located foci of demyelination and contribute to the remyelination of the demyelinated axons within. These studies demonstrate that although the normal adult CNS does not appear to support survival and migration of the CG4 cell line, it is possible to manipulate the environment in such a way that these nonpermissive properties of the environment can be overcome.

Keywords: Rat, demyelination, glia, astrocytes, transplantation

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. C., Harvath L., Dubois-Dalcq M. E. Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. J Neurosci Res. 1990 Nov;27(3):400–407. doi: 10.1002/jnr.490270319. [DOI] [PubMed] [Google Scholar]
  2. Barnett S. C., Franklin R. J., Blakemore W. F. In vitro and in vivo analysis of a rat bipotential O-2A progenitor cell line containing the temperature-sensitive mutant gene of the SV40 large T antigen. Eur J Neurosci. 1993 Oct 1;5(10):1247–1260. doi: 10.1111/j.1460-9568.1993.tb00910.x. [DOI] [PubMed] [Google Scholar]
  3. Baron-Van Evercooren A., Avellana-Adalid V., Ben Younes-Chennoufi A., Gansmuller A., Nait-Oumesmar B., Vignais L. Cell-cell interactions during the migration of myelin-forming cells transplanted in the demyelinated spinal cord. Glia. 1996 Feb;16(2):147–164. doi: 10.1002/(SICI)1098-1136(199602)16:2<147::AID-GLIA7>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  4. Barres B. A., Hart I. K., Coles H. S., Burne J. F., Voyvodic J. T., Richardson W. D., Raff M. C. Cell death and control of cell survival in the oligodendrocyte lineage. Cell. 1992 Jul 10;70(1):31–46. doi: 10.1016/0092-8674(92)90531-g. [DOI] [PubMed] [Google Scholar]
  5. Barres B. A., Raff M. C., Gaese F., Bartke I., Dechant G., Barde Y. A. A crucial role for neurotrophin-3 in oligodendrocyte development. Nature. 1994 Jan 27;367(6461):371–375. doi: 10.1038/367371a0. [DOI] [PubMed] [Google Scholar]
  6. Barres B. A., Schmid R., Sendnter M., Raff M. C. Multiple extracellular signals are required for long-term oligodendrocyte survival. Development. 1993 May;118(1):283–295. doi: 10.1242/dev.118.1.283. [DOI] [PubMed] [Google Scholar]
  7. Baulac M., Lachapelle F., Gout O., Berger B., Baumann N., Gumpel M. Transplantation of oligodendrocytes in the newborn mouse brain: extension of myelination by transplanted cells. Anatomical study. Brain Res. 1987 Sep 8;420(1):39–47. doi: 10.1016/0006-8993(87)90237-x. [DOI] [PubMed] [Google Scholar]
  8. Blakemore W. F., Franklin R. J. Transplantation of glial cells into the CNS. Trends Neurosci. 1991 Aug;14(8):323–327. doi: 10.1016/0166-2236(91)90155-n. [DOI] [PubMed] [Google Scholar]
  9. Bögler O., Wren D., Barnett S. C., Land H., Noble M. Cooperation between two growth factors promotes extended self-renewal and inhibits differentiation of oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6368–6372. doi: 10.1073/pnas.87.16.6368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chiang C. S., McBride W. H., Withers H. R. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother Oncol. 1993 Oct;29(1):60–68. doi: 10.1016/0167-8140(93)90174-7. [DOI] [PubMed] [Google Scholar]
  11. Duncan I. D. Glial cell transplantation and remyelination of the central nervous system. Neuropathol Appl Neurobiol. 1996 Apr;22(2):87–100. doi: 10.1111/j.1365-2990.1996.tb00852.x. [DOI] [PubMed] [Google Scholar]
  12. Duncan I. D., Hammang J. P., Jackson K. F., Wood P. M., Bunge R. P., Langford L. Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin-deficient rat. J Neurocytol. 1988 Jun;17(3):351–360. doi: 10.1007/BF01187857. [DOI] [PubMed] [Google Scholar]
  13. Duncan I. D., Lunn K. F., Holmgren B., Urba-Holmgren R., Brignolo-Holmes L. The taiep rat: a myelin mutant with an associated oligodendrocyte microtubular defect. J Neurocytol. 1992 Dec;21(12):870–884. doi: 10.1007/BF01191684. [DOI] [PubMed] [Google Scholar]
  14. Duncan I. D., Paino C., Archer D. R., Wood P. M. Functional capacities of transplanted cell-sorted adult oligodendrocytes. Dev Neurosci. 1992;14(2):114–122. doi: 10.1159/000111655. [DOI] [PubMed] [Google Scholar]
  15. Espinosa de los Monteros A., Zhang M., De Vellis J. O2A progenitor cells transplanted into the neonatal rat brain develop into oligodendrocytes but not astrocytes. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):50–54. doi: 10.1073/pnas.90.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Franklin R. J., Bayley S. A., Blakemore W. F. Transplanted CG4 cells (an oligodendrocyte progenitor cell line) survive, migrate, and contribute to repair of areas of demyelination in X-irradiated and damaged spinal cord but not in normal spinal cord. Exp Neurol. 1996 Feb;137(2):263–276. doi: 10.1006/exnr.1996.0025. [DOI] [PubMed] [Google Scholar]
  17. Franklin R. J., Bayley S. A., Milner R., Ffrench-Constant C., Blakemore W. F. Differentiation of the O-2A progenitor cell line CG-4 into oligodendrocytes and astrocytes following transplantation into glia-deficient areas of CNS white matter. Glia. 1995 Jan;13(1):39–44. doi: 10.1002/glia.440130105. [DOI] [PubMed] [Google Scholar]
  18. Franklin R. J., Blakemore W. F. Glial-cell transplantation and plasticity in the O-2A lineage--implications for CNS repair. Trends Neurosci. 1995 Mar;18(3):151–156. doi: 10.1016/0166-2236(95)93893-3. [DOI] [PubMed] [Google Scholar]
  19. Franklin R. J., Crang A. J., Blakemore W. F. Transplanted type-1 astrocytes facilitate repair of demyelinating lesions by host oligodendrocytes in adult rat spinal cord. J Neurocytol. 1991 May;20(5):420–430. doi: 10.1007/BF01355538. [DOI] [PubMed] [Google Scholar]
  20. Friedrich V. L., Jr, Lazzarini R. A. Restricted migration of transplanted oligodendrocytes or their progenitors, revealed by transgenic marker M beta P. J Neural Transplant Plast. 1993 Apr-Jun;4(2):139–146. doi: 10.1155/NP.1993.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Fulton B. P., Burne J. F., Raff M. C. Visualization of O-2A progenitor cells in developing and adult rat optic nerve by quisqualate-stimulated cobalt uptake. J Neurosci. 1992 Dec;12(12):4816–4833. doi: 10.1523/JNEUROSCI.12-12-04816.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gansmuller A., Clerin E., Krüger F., Gumpel M., Lachapelle F. Tracing transplanted oligodendrocytes during migration and maturation in the shiverer mouse brain. Glia. 1991;4(6):580–590. doi: 10.1002/glia.440040605. [DOI] [PubMed] [Google Scholar]
  23. Gout O., Dubois-Dalcq M. Directed migration of transplanted glial cells toward a spinal cord demyelinating lesion. Int J Dev Neurosci. 1993 Oct;11(5):613–623. doi: 10.1016/0736-5748(93)90050-n. [DOI] [PubMed] [Google Scholar]
  24. Gout O., Gansmuller A., Baumann N., Gumpel M. Remyelination by transplanted oligodendrocytes of a demyelinated lesion in the spinal cord of the adult shiverer mouse. Neurosci Lett. 1988 Apr 22;87(1-2):195–199. doi: 10.1016/0304-3940(88)90169-3. [DOI] [PubMed] [Google Scholar]
  25. Groves A. K., Barnett S. C., Franklin R. J., Crang A. J., Mayer M., Blakemore W. F., Noble M. Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature. 1993 Apr 1;362(6419):453–455. doi: 10.1038/362453a0. [DOI] [PubMed] [Google Scholar]
  26. Gumpel M., Baumann N., Raoul M., Jacque C. Survival and differentiation of oligodendrocytes from neural tissue transplanted into new-born mouse brain. Neurosci Lett. 1983 Jun 30;37(3):307–311. doi: 10.1016/0304-3940(83)90449-4. [DOI] [PubMed] [Google Scholar]
  27. Gumpel M., Gout O., Lubetzki C., Gansmuller A., Baumann N. Myelination and remyelination in the central nervous system by transplanted oligodendrocytes using the shiverer model. Discussion on the remyelinating cell population in adult mammals. Dev Neurosci. 1989;11(2):132–139. doi: 10.1159/000111894. [DOI] [PubMed] [Google Scholar]
  28. Huang P. P., Alliquant B., Carmel P. W., Friedman E. D. Myelination of the rat retina by transplantation of oligodendrocytes into 4-day-old hosts. Exp Neurol. 1991 Sep;113(3):291–300. doi: 10.1016/0014-4886(91)90018-8. [DOI] [PubMed] [Google Scholar]
  29. Jacque C., Quinonero J., Collins P. V., Villarroya H., Suard I. Comparative migration and development of astroglial and oligodendroglial cell populations from a brain xenograft. J Neurosci. 1992 Aug;12(8):3098–3106. doi: 10.1523/JNEUROSCI.12-08-03098.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jeffery N. D., Blakemore W. F. Remyelination of mouse spinal cord axons demyelinated by local injection of lysolecithin. J Neurocytol. 1995 Oct;24(10):775–781. doi: 10.1007/BF01191213. [DOI] [PubMed] [Google Scholar]
  31. Kiernan B. W., Ffrench-Constant C. Oligodendrocyte precursor (O-2A progenitor cell) migration; a model system for the study of cell migration in the developing central nervous system. Dev Suppl. 1993:219–225. [PubMed] [Google Scholar]
  32. Komoly S., Hudson L. D., Webster H. D., Bondy C. A. Insulin-like growth factor I gene expression is induced in astrocytes during experimental demyelination. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1894–1898. doi: 10.1073/pnas.89.5.1894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lachapelle F., Duhamel-Clerin E., Gansmüller A., Baron-Van Evercooren A., Villarroya H., Gumpel M. Transplanted transgenically marked oligodendrocytes survive, migrate and myelinate in the normal mouse brain as they do in the shiverer mouse brain. Eur J Neurosci. 1994 May 1;6(5):814–824. doi: 10.1111/j.1460-9568.1994.tb00992.x. [DOI] [PubMed] [Google Scholar]
  34. Levison S. W., Chuang C., Abramson B. J., Goldman J. E. The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated. Development. 1993 Nov;119(3):611–622. doi: 10.1242/dev.119.3.611. [DOI] [PubMed] [Google Scholar]
  35. Lipsitz D., Archer D. R., Duncan I. D. Acute dispersion of glial cells following transplantation into the myelin-deficient rat spinal cord. Glia. 1995 Jul;14(3):237–242. doi: 10.1002/glia.440140309. [DOI] [PubMed] [Google Scholar]
  36. Ludwin S. K., Szuchet S. Myelination by mature ovine oligodendrocytes in vivo and in vitro: evidence that different steps in the myelination process are independently controlled. Glia. 1993 Aug;8(4):219–231. doi: 10.1002/glia.440080402. [DOI] [PubMed] [Google Scholar]
  37. Nadon N. L., Duncan I. D., Hudson L. D. A point mutation in the proteolipid protein gene of the 'shaking pup' interrupts oligodendrocyte development. Development. 1990 Oct;110(2):529–537. doi: 10.1242/dev.110.2.529. [DOI] [PubMed] [Google Scholar]
  38. Pfeiffer S. E., Warrington A. E., Bansal R. The oligodendrocyte and its many cellular processes. Trends Cell Biol. 1993 Jun;3(6):191–197. doi: 10.1016/0962-8924(93)90213-k. [DOI] [PubMed] [Google Scholar]
  39. Raff M. C., Miller R. H., Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature. 1983 Jun 2;303(5916):390–396. doi: 10.1038/303390a0. [DOI] [PubMed] [Google Scholar]
  40. Rosenbluth J., Hasegawa M., Shirasaki N., Rosen C. L., Liu Z. Myelin formation following transplantation of normal fetal glia into myelin-deficient rat spinal cord. J Neurocytol. 1990 Oct;19(5):718–730. doi: 10.1007/BF01188040. [DOI] [PubMed] [Google Scholar]
  41. Skoff R. P. Gliogenesis in rat optic nerve: astrocytes are generated in a single wave before oligodendrocytes. Dev Biol. 1990 May;139(1):149–168. doi: 10.1016/0012-1606(90)90285-q. [DOI] [PubMed] [Google Scholar]
  42. Small R. K., Riddle P., Noble M. Evidence for migration of oligodendrocyte--type-2 astrocyte progenitor cells into the developing rat optic nerve. Nature. 1987 Jul 9;328(6126):155–157. doi: 10.1038/328155a0. [DOI] [PubMed] [Google Scholar]
  43. Takamiya Y., Kohsaka S., Toya S., Otani M., Mikoshiba K., Tsukada Y. Possible association of platelet-derived growth factor (PDGF) with the appearance of reactive astrocytes following brain injury in situ. Brain Res. 1986 Sep 24;383(1-2):305–309. doi: 10.1016/0006-8993(86)90029-6. [DOI] [PubMed] [Google Scholar]
  44. Tontsch U., Archer D. R., Dubois-Dalcq M., Duncan I. D. Transplantation of an oligodendrocyte cell line leading to extensive myelination. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11616–11620. doi: 10.1073/pnas.91.24.11616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Trotter J., Crang A. J., Schachner M., Blakemore W. F. Lines of glial precursor cells immortalised with a temperature-sensitive oncogene give rise to astrocytes and oligodendrocytes following transplantation into demyelinated lesions in the central nervous system. Glia. 1993 Sep;9(1):25–40. doi: 10.1002/glia.440090105. [DOI] [PubMed] [Google Scholar]
  46. Vignais L., Nait Oumesmar B., Mellouk F., Gout O., Labourdette G., Baron-Van Evercooren A., Gumpel M. Transplantation of oligodendrocyte precursors in the adult demyelinated spinal cord: migration and remyelination. Int J Dev Neurosci. 1993 Oct;11(5):603–612. doi: 10.1016/0736-5748(93)90049-j. [DOI] [PubMed] [Google Scholar]
  47. Warrington A. E., Barbarese E., Pfeiffer S. E. Differential myelinogenic capacity of specific developmental stages of the oligodendrocyte lineage upon transplantation into hypomyelinating hosts. J Neurosci Res. 1993 Jan;34(1):1–13. doi: 10.1002/jnr.490340102. [DOI] [PubMed] [Google Scholar]