Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments (original) (raw)

Abstract

The molecular mechanisms that enable multicellular organisms to sense and modulate their responses to hyperosmotic environments are poorly understood. Here, we employ Caenorhabditis elegans to characterize the response of a multicellular organism to osmotic stress and establish a genetic screen to isolate mutants that are osmotic stress resistant (OSR). In this study, we describe the cloning of a novel gene, osr-1, and demonstrate that it regulates osmosensation, adaptation, and survival in hyperosmotic environments. Whereas wild-type animals exposed to hyperosmotic conditions rapidly lose body volume, motility, and viability, osr-1(rm1) mutant animals maintain normal body volume, motility, and viability even upon chronic exposures to high osmolarity environments. In addition, osr-1(rm1) animals are specifically resistant to osmotic stress and are distinct from previously characterized osmotic avoidance defective (OSM) and general stress resistance age-1(hx546) mutants. OSR-1 is expressed in the hypodermis and intestine, and expression of OSR-1 in hypodermal cells rescues the osr-1(rm1) phenotypes. Genetic epistasis analysis indicates that OSR-1 regulates survival under osmotic stress via CaMKII and a conserved p38 MAP kinase signaling cascade and regulates osmotic avoidance and resistance to acute dehydration likely by distinct mechanisms. We suggest that OSR-1 plays a central role in integrating stress detection and adaptation responses by invoking multiple signaling pathways to promote survival under hyperosmotic environments.

Full Text

The Full Text of this article is available as a PDF (403.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altun-Gultekin Z., Andachi Y., Tsalik E. L., Pilgrim D., Kohara Y., Hobert O. A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. Development. 2001 Jun;128(11):1951–1969. doi: 10.1242/dev.128.11.1951. [DOI] [PubMed] [Google Scholar]
  2. Bargmann C. I., Thomas J. H., Horvitz H. R. Chemosensory cell function in the behavior and development of Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol. 1990;55:529–538. doi: 10.1101/sqb.1990.055.01.051. [DOI] [PubMed] [Google Scholar]
  3. Berman K., McKay J., Avery L., Cobb M. Isolation and characterization of pmk-(1-3): three p38 homologs in Caenorhabditis elegans. Mol Cell Biol Res Commun. 2001 Nov;4(6):337–344. doi: 10.1006/mcbr.2001.0300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brewster J. L., de Valoir T., Dwyer N. D., Winter E., Gustin M. C. An osmosensing signal transduction pathway in yeast. Science. 1993 Mar 19;259(5102):1760–1763. doi: 10.1126/science.7681220. [DOI] [PubMed] [Google Scholar]
  6. Crowe Lois M. Lessons from nature: the role of sugars in anhydrobiosis. Comp Biochem Physiol A Mol Integr Physiol. 2002 Mar;131(3):505–513. doi: 10.1016/s1095-6433(01)00503-7. [DOI] [PubMed] [Google Scholar]
  7. Culotti J. G., Russell R. L. Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics. 1978 Oct;90(2):243–256. doi: 10.1093/genetics/90.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Han J., Lee J. D., Bibbs L., Ulevitch R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994 Aug 5;265(5173):808–811. doi: 10.1126/science.7914033. [DOI] [PubMed] [Google Scholar]
  9. Hart A. C., Kass J., Shapiro J. E., Kaplan J. M. Distinct signaling pathways mediate touch and osmosensory responses in a polymodal sensory neuron. J Neurosci. 1999 Mar 15;19(6):1952–1958. doi: 10.1523/JNEUROSCI.19-06-01952.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Henderson S. T., Johnson T. E. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol. 2001 Dec 11;11(24):1975–1980. doi: 10.1016/s0960-9822(01)00594-2. [DOI] [PubMed] [Google Scholar]
  11. Hohmann Stefan. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev. 2002 Jun;66(2):300–372. doi: 10.1128/MMBR.66.2.300-372.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaplan J. M., Horvitz H. R. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2227–2231. doi: 10.1073/pnas.90.6.2227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kenyon C., Chang J., Gensch E., Rudner A., Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993 Dec 2;366(6454):461–464. doi: 10.1038/366461a0. [DOI] [PubMed] [Google Scholar]
  14. Kim Dennis H., Feinbaum Rhonda, Alloing Geneviève, Emerson Fred E., Garsin Danielle A., Inoue Hideki, Tanaka-Hino Miho, Hisamoto Naoki, Matsumoto Kunihiro, Tan Man-Wah. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science. 2002 Jul 26;297(5581):623–626. doi: 10.1126/science.1073759. [DOI] [PubMed] [Google Scholar]
  15. Kimura K. D., Tissenbaum H. A., Liu Y., Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997 Aug 15;277(5328):942–946. doi: 10.1126/science.277.5328.942. [DOI] [PubMed] [Google Scholar]
  16. Koga M., Zwaal R., Guan K. L., Avery L., Ohshima Y. A Caenorhabditis elegans MAP kinase kinase, MEK-1, is involved in stress responses. EMBO J. 2000 Oct 2;19(19):5148–5156. doi: 10.1093/emboj/19.19.5148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kurz C. Léopold, Ewbank Jonathan J. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet. 2003 May;4(5):380–390. doi: 10.1038/nrg1067. [DOI] [PubMed] [Google Scholar]
  18. Lamitina S. Todd, Morrison Rebecca, Moeckel Gilbert W., Strange Kevin. Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress. Am J Physiol Cell Physiol. 2003 Nov 26;286(4):C785–C791. doi: 10.1152/ajpcell.00381.2003. [DOI] [PubMed] [Google Scholar]
  19. Larsen P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8905–8909. doi: 10.1073/pnas.90.19.8905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee Siu Sylvia, Lee Raymond Y. N., Fraser Andrew G., Kamath Ravi S., Ahringer Julie, Ruvkun Gary. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet. 2002 Nov 25;33(1):40–48. doi: 10.1038/ng1056. [DOI] [PubMed] [Google Scholar]
  21. Levy A. D., Yang J., Kramer J. M. Molecular and genetic analyses of the Caenorhabditis elegans dpy-2 and dpy-10 collagen genes: a variety of molecular alterations affect organismal morphology. Mol Biol Cell. 1993 Aug;4(8):803–817. doi: 10.1091/mbc.4.8.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liedtke W., Choe Y., Martí-Renom M. A., Bell A. M., Denis C. S., Sali A., Hudspeth A. J., Friedman J. M., Heller S. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 2000 Oct 27;103(3):525–535. doi: 10.1016/s0092-8674(00)00143-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lithgow G. J., White T. M., Melov S., Johnson T. E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7540–7544. doi: 10.1073/pnas.92.16.7540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maeda T., Wurgler-Murphy S. M., Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994 May 19;369(6477):242–245. doi: 10.1038/369242a0. [DOI] [PubMed] [Google Scholar]
  25. Murakami S., Johnson T. E. A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics. 1996 Jul;143(3):1207–1218. doi: 10.1093/genetics/143.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. O'Rourke Sean M., Herskowitz Ira. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch. Mol Cell Biol. 2002 Jul;22(13):4739–4749. doi: 10.1128/MCB.22.13.4739-4749.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. O'Rourke Sean M., Herskowitz Ira, O'Shea Erin K. Yeast go the whole HOG for the hyperosmotic response. Trends Genet. 2002 Aug;18(8):405–412. doi: 10.1016/s0168-9525(02)02723-3. [DOI] [PubMed] [Google Scholar]
  28. Ogg S., Paradis S., Gottlieb S., Patterson G. I., Lee L., Tissenbaum H. A., Ruvkun G. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997 Oct 30;389(6654):994–999. doi: 10.1038/40194. [DOI] [PubMed] [Google Scholar]
  29. Petalcorin M. I., Oka T., Koga M., Ogura K., Wada Y., Ohshima Y., Futai M. Disruption of clh-1, a chloride channel gene, results in a wider body of Caenorhabditis elegans. J Mol Biol. 1999 Nov 26;294(2):347–355. doi: 10.1006/jmbi.1999.3241. [DOI] [PubMed] [Google Scholar]
  30. Posas F., Wurgler-Murphy S. M., Maeda T., Witten E. A., Thai T. C., Saito H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell. 1996 Sep 20;86(6):865–875. doi: 10.1016/s0092-8674(00)80162-2. [DOI] [PubMed] [Google Scholar]
  31. Qiu Lihong, Bedding Robin A. Characteristics of protectant synthesis of infective juveniles of Steinernema carpocapsae and importance of glycerol as a protectant for survival of the nematodes during osmotic dehydration. Comp Biochem Physiol B Biochem Mol Biol. 2002 Apr;131(4):757–765. doi: 10.1016/s1096-4959(02)00019-2. [DOI] [PubMed] [Google Scholar]
  32. Reiner D. J., Newton E. M., Tian H., Thomas J. H. Diverse behavioural defects caused by mutations in Caenorhabditis elegans unc-43 CaM kinase II. Nature. 1999 Nov 11;402(6758):199–203. doi: 10.1038/46072. [DOI] [PubMed] [Google Scholar]
  33. Sagasti A., Hisamoto N., Hyodo J., Tanaka-Hino M., Matsumoto K., Bargmann C. I. The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell. 2001 Apr 20;105(2):221–232. doi: 10.1016/s0092-8674(01)00313-0. [DOI] [PubMed] [Google Scholar]
  34. Tanaka-Hino Miho, Sagasti Alvaro, Hisamoto Naoki, Kawasaki Masato, Nakano Shunji, Ninomiya-Tsuji Jun, Bargmann Cornelia I., Matsumoto Kunihiro. SEK-1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans. EMBO Rep. 2001 Dec 19;3(1):56–62. doi: 10.1093/embo-reports/kvf001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Timmons L., Court D. L., Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 2001 Jan 24;263(1-2):103–112. doi: 10.1016/s0378-1119(00)00579-5. [DOI] [PubMed] [Google Scholar]
  36. Tobin David M., Madsen David M., Kahn-Kirby Amanda, Peckol Erin L., Moulder Gary, Barstead Robert, Maricq Andres V., Bargmann Cornelia I. Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron. 2002 Jul 18;35(2):307–318. doi: 10.1016/s0896-6273(02)00757-2. [DOI] [PubMed] [Google Scholar]
  37. Uhlik Mark T., Abell Amy N., Johnson Nancy L., Sun Weiyong, Cuevas Bruce D., Lobel-Rice Katherine E., Horne Eric A., Dell'Acqua Mark L., Johnson Gary L. Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol. 2003 Nov 23;5(12):1104–1110. doi: 10.1038/ncb1071. [DOI] [PubMed] [Google Scholar]
  38. Villanueva A., Lozano J., Morales A., Lin X., Deng X., Hengartner M. O., Kolesnick R. N. jkk-1 and mek-1 regulate body movement coordination and response to heavy metals through jnk-1 in Caenorhabditis elegans. EMBO J. 2001 Sep 17;20(18):5114–5128. doi: 10.1093/emboj/20.18.5114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Walhout A. J., Temple G. F., Brasch M. A., Hartley J. L., Lorson M. A., van den Heuvel S., Vidal M. GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol. 2000;328:575–592. doi: 10.1016/s0076-6879(00)28419-x. [DOI] [PubMed] [Google Scholar]
  40. Wang Jianjun, Tokarz Rafal, Savage-Dunn Cathy. The expression of TGFbeta signal transducers in the hypodermis regulates body size in C. elegans. Development. 2002 Nov;129(21):4989–4998. doi: 10.1242/dev.129.21.4989. [DOI] [PubMed] [Google Scholar]
  41. Welch W. J., Brown C. R. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones. 1996 Jun;1(2):109–115. doi: 10.1379/1466-1268(1996)001<0109:iomacc>2.3.co;2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
  43. de Nadal Eulàlia, Alepuz Paula M., Posas Francesc. Dealing with osmostress through MAP kinase activation. EMBO Rep. 2002 Aug;3(8):735–740. doi: 10.1093/embo-reports/kvf158. [DOI] [PMC free article] [PubMed] [Google Scholar]