The PGL family proteins associate with germ granules and function redundantly in Caenorhabditis elegans germline development (original) (raw)

Abstract

PGL-1 is a constitutive protein component of C. elegans germ granules, also known as P granules. Maternally supplied PGL-1 is essential for germline development but only at elevated temperature, raising the possibility that redundant factors provide sufficient function at lower temperatures. We have identified two PGL-1-related proteins, PGL-2 and PGL-3, by sequence analysis of the C. elegans genome and by a yeast two-hybrid screen for proteins that interact with PGL-1. PGL-3 is associated with P granules at all stages of development, while PGL-2 is associated with P granules only during postembryonic development. All three PGL proteins interact with each other in vitro. Furthermore, PGL-1 and PGL-3 are co-immunoprecipitated from embryo extracts, indicating that they are indeed in the same protein complex in vivo. Nevertheless, each PGL protein localizes to P granules independently of the other two. pgl-2 or pgl-3 single-mutant worms do not show obvious defects in germline development. However, pgl-1; pgl-3 (but not pgl-2; pgl-1) double-mutant hermaphrodites and males show significantly enhanced sterility at all temperatures, compared to pgl-1 alone. Mutant hermaphrodites show defects in germline proliferation and in production of healthy gametes and viable embryos. Our findings demonstrate that both PGL-2 and PGL-3 are components of P granules, both interact with PGL-1, and at least PGL-3 functions redundantly with PGL-1 to ensure fertility in both sexes of C. elegans.

Full Text

The Full Text of this article is available as a PDF (667.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amiri A., Keiper B. D., Kawasaki I., Fan Y., Kohara Y., Rhoads R. E., Strome S. An isoform of eIF4E is a component of germ granules and is required for spermatogenesis in C. elegans. Development. 2001 Oct;128(20):3899–3912. doi: 10.1242/dev.128.20.3899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbee Scott A., Lublin Alex L., Evans Thomas C. A novel function for the Sm proteins in germ granule localization during C. elegans embryogenesis. Curr Biol. 2002 Sep 3;12(17):1502–1506. doi: 10.1016/s0960-9822(02)01111-9. [DOI] [PubMed] [Google Scholar]
  3. Beanan M. J., Strome S. Characterization of a germ-line proliferation mutation in C. elegans. Development. 1992 Nov;116(3):755–766. doi: 10.1242/dev.116.3.755. [DOI] [PubMed] [Google Scholar]
  4. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. doi: 10.1126/science.282.5396.2012. [DOI] [PubMed] [Google Scholar]
  6. DeRenzo Cynthia, Reese Kimberly J., Seydoux Geraldine. Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. Nature. 2003 Jul 23;424(6949):685–689. doi: 10.1038/nature01887.. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Draper B. W., Mello C. C., Bowerman B., Hardin J., Priess J. R. MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell. 1996 Oct 18;87(2):205–216. doi: 10.1016/s0092-8674(00)81339-2. [DOI] [PubMed] [Google Scholar]
  8. Durfee T., Becherer K., Chen P. L., Yeh S. H., Yang Y., Kilburn A. E., Lee W. H., Elledge S. J. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993 Apr;7(4):555–569. doi: 10.1101/gad.7.4.555. [DOI] [PubMed] [Google Scholar]
  9. Eddy E. M. Germ plasm and the differentiation of the germ cell line. Int Rev Cytol. 1975;43:229–280. doi: 10.1016/s0074-7696(08)60070-4. [DOI] [PubMed] [Google Scholar]
  10. Ephrussi A., Lehmann R. Induction of germ cell formation by oskar. Nature. 1992 Jul 30;358(6385):387–392. doi: 10.1038/358387a0. [DOI] [PubMed] [Google Scholar]
  11. Evans D., Zorio D., MacMorris M., Winter C. E., Lea K., Blumenthal T. Operons and SL2 trans-splicing exist in nematodes outside the genus Caenorhabditis. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9751–9756. doi: 10.1073/pnas.94.18.9751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Forbes A., Lehmann R. Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development. 1998 Feb;125(4):679–690. doi: 10.1242/dev.125.4.679. [DOI] [PubMed] [Google Scholar]
  13. Gruidl M. E., Smith P. A., Kuznicki K. A., McCrone J. S., Kirchner J., Roussell D. L., Strome S., Bennett K. L. Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13837–13842. doi: 10.1073/pnas.93.24.13837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guedes S., Priess J. R. The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. Development. 1997 Feb;124(3):731–739. doi: 10.1242/dev.124.3.731. [DOI] [PubMed] [Google Scholar]
  15. Hay B., Jan L. Y., Jan Y. N. A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell. 1988 Nov 18;55(4):577–587. doi: 10.1016/0092-8674(88)90216-4. [DOI] [PubMed] [Google Scholar]
  16. Holdeman R., Nehrt S., Strome S. MES-2, a maternal protein essential for viability of the germline in Caenorhabditis elegans, is homologous to a Drosophila Polycomb group protein. Development. 1998 Jul;125(13):2457–2467. doi: 10.1242/dev.125.13.2457. [DOI] [PubMed] [Google Scholar]
  17. Ikenishi K. Functional gametes derived from explants of single blastomeres containing the "germ plasm" in Xenopus laevis: a genetic marker study. Dev Biol. 1987 Jul;122(1):35–38. doi: 10.1016/0012-1606(87)90329-0. [DOI] [PubMed] [Google Scholar]
  18. Illmensee K., Mahowald A. P. Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1016–1020. doi: 10.1073/pnas.71.4.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jones A. R., Francis R., Schedl T. GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev Biol. 1996 Nov 25;180(1):165–183. doi: 10.1006/dbio.1996.0293. [DOI] [PubMed] [Google Scholar]
  20. Karashima T., Sugimoto A., Yamamoto M. Caenorhabditis elegans homologue of the human azoospermia factor DAZ is required for oogenesis but not for spermatogenesis. Development. 2000 Mar;127(5):1069–1079. doi: 10.1242/dev.127.5.1069. [DOI] [PubMed] [Google Scholar]
  21. Kawasaki I., Shim Y. H., Kirchner J., Kaminker J., Wood W. B., Strome S. PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell. 1998 Sep 4;94(5):635–645. doi: 10.1016/s0092-8674(00)81605-0. [DOI] [PubMed] [Google Scholar]
  22. Kiledjian M., Dreyfuss G. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J. 1992 Jul;11(7):2655–2664. doi: 10.1002/j.1460-2075.1992.tb05331.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kobayashi S., Yamada M., Asaoka M., Kitamura T. Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature. 1996 Apr 25;380(6576):708–711. doi: 10.1038/380708a0. [DOI] [PubMed] [Google Scholar]
  24. Kuznicki K. A., Smith P. A., Leung-Chiu W. M., Estevez A. O., Scott H. C., Bennett K. L. Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans. Development. 2000 Jul;127(13):2907–2916. doi: 10.1242/dev.127.13.2907. [DOI] [PubMed] [Google Scholar]
  25. Lasko P. F., Ashburner M. The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature. 1988 Oct 13;335(6191):611–617. doi: 10.1038/335611a0. [DOI] [PubMed] [Google Scholar]
  26. Mader S., Lee H., Pause A., Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol. 1995 Sep;15(9):4990–4997. doi: 10.1128/mcb.15.9.4990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mello C. C., Draper B. W., Krause M., Weintraub H., Priess J. R. The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos. Cell. 1992 Jul 10;70(1):163–176. doi: 10.1016/0092-8674(92)90542-k. [DOI] [PubMed] [Google Scholar]
  28. Mello C. C., Schubert C., Draper B., Zhang W., Lobel R., Priess J. R. The PIE-1 protein and germline specification in C. elegans embryos. Nature. 1996 Aug 22;382(6593):710–712. doi: 10.1038/382710a0. [DOI] [PubMed] [Google Scholar]
  29. Olmsted J. B. Analysis of cytoskeletal structures using blot-purified monospecific antibodies. Methods Enzymol. 1986;134:467–472. doi: 10.1016/0076-6879(86)34112-0. [DOI] [PubMed] [Google Scholar]
  30. Pitt J. N., Schisa J. A., Priess J. R. P granules in the germ cells of Caenorhabditis elegans adults are associated with clusters of nuclear pores and contain RNA. Dev Biol. 2000 Mar 15;219(2):315–333. doi: 10.1006/dbio.2000.9607. [DOI] [PubMed] [Google Scholar]
  31. Roussell D. L., Bennett K. L. glh-1, a germ-line putative RNA helicase from Caenorhabditis, has four zinc fingers. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9300–9304. doi: 10.1073/pnas.90.20.9300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Saffman E. E., Lasko P. Germline development in vertebrates and invertebrates. Cell Mol Life Sci. 1999 Jul;55(8-9):1141–1163. doi: 10.1007/s000180050363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schisa J. A., Pitt J. N., Priess J. R. Analysis of RNA associated with P granules in germ cells of C. elegans adults. Development. 2001 Apr;128(8):1287–1298. doi: 10.1242/dev.128.8.1287. [DOI] [PubMed] [Google Scholar]
  34. Seydoux G., Fire A. Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development. 1994 Oct;120(10):2823–2834. doi: 10.1242/dev.120.10.2823. [DOI] [PubMed] [Google Scholar]
  35. Spieth J., Brooke G., Kuersten S., Lea K., Blumenthal T. Operons in C. elegans: polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions. Cell. 1993 May 7;73(3):521–532. doi: 10.1016/0092-8674(93)90139-h. [DOI] [PubMed] [Google Scholar]
  36. Strome S., Powers J., Dunn M., Reese K., Malone C. J., White J., Seydoux G., Saxton W. Spindle dynamics and the role of gamma-tubulin in early Caenorhabditis elegans embryos. Mol Biol Cell. 2001 Jun;12(6):1751–1764. doi: 10.1091/mbc.12.6.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Strome S., Wood W. B. Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1558–1562. doi: 10.1073/pnas.79.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tabara H., Hill R. J., Mello C. C., Priess J. R., Kohara Y. pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans. Development. 1999 Jan;126(1):1–11. doi: 10.1242/dev.126.1.1. [DOI] [PubMed] [Google Scholar]
  39. Tabara H., Motohashi T., Kohara Y. A multi-well version of in situ hybridization on whole mount embryos of Caenorhabditis elegans. Nucleic Acids Res. 1996 Jun 1;24(11):2119–2124. doi: 10.1093/nar/24.11.2119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Williamson A., Lehmann R. Germ cell development in Drosophila. Annu Rev Cell Dev Biol. 1996;12:365–391. doi: 10.1146/annurev.cellbio.12.1.365. [DOI] [PubMed] [Google Scholar]
  41. Wylie C. Germ cells. Cell. 1999 Jan 22;96(2):165–174. doi: 10.1016/s0092-8674(00)80557-7. [DOI] [PubMed] [Google Scholar]
  42. Xu L., Fong Y., Strome S. The Caenorhabditis elegans maternal-effect sterile proteins, MES-2, MES-3, and MES-6, are associated in a complex in embryos. Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5061–5066. doi: 10.1073/pnas.081016198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yandell M. D., Edgar L. G., Wood W. B. Trimethylpsoralen induces small deletion mutations in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1381–1385. doi: 10.1073/pnas.91.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zetka M. C., Kawasaki I., Strome S., Müller F. Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. Genes Dev. 1999 Sep 1;13(17):2258–2270. doi: 10.1101/gad.13.17.2258. [DOI] [PMC free article] [PubMed] [Google Scholar]