Regulation of Leishmania populations within the host. II. genetic control of acute susceptibility of mice to Leishmania donovani infection (original) (raw)

. 1977 Oct;30(1):130–140.

Abstract

The acute growth rates of Leishmania donovani populations in twenty-five inbred mouse strains fall into two distinct groups: the susceptible (S) and the resistant (R). Hybrids within either category resemble their parents in susceptibility. Hybrids between categories are moderately resistant. Back-crossing of F1 hybrids to R and S parents, and interbreeding the F1 generation, give susceptibility ratios consistent with single gene control of acute susceptibility to visceral leishmaniasis. The distribution of this character among inbred mouse strains does not correspond to any well-studied gene nor does it appear to be linked to the H2 histocompatibility locus.

130

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACTOR P. Protein and vitamin intake and visceral leishmaniasis in the mouse. Exp Parasitol. 1960 Sep;10:1–20. doi: 10.1016/0014-4894(60)90078-3. [DOI] [PubMed] [Google Scholar]
  2. Bang F. B., Warwick A. MOUSE MACROPHAGES AS HOST CELLS FOR THE MOUSE HEPATITIS VIRUS AND THE GENETIC BASIS OF THEIR SUSCEPTIBILITY. Proc Natl Acad Sci U S A. 1960 Aug;46(8):1065–1075. doi: 10.1073/pnas.46.8.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradley D. J., Kirkley J. Regulation of Leishmania populations within the host. I. the variable course of Leishmania donovani infections in mice. Clin Exp Immunol. 1977 Oct;30(1):119–129. [PMC free article] [PubMed] [Google Scholar]
  4. Fenner F. Genetic aspects of viral diseases of animals. Prog Med Genet. 1972;8:1–60. [PubMed] [Google Scholar]
  5. GOWEN J. W. Genetic effects in nonspecific resistance to infectious disease. Bacteriol Rev. 1960 Mar;24(1):192–200. doi: 10.1128/br.24.1.192-200.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MORROW A. G., GREENSPAN E. M., CARROLL D. M. Comparative studies of liver glucuronidase activity in inbred mice. J Natl Cancer Inst. 1950 Apr;10(5):1199–1203. [PubMed] [Google Scholar]
  7. PETERS W. COMPETITIVE RELATIONSHIP BETWEEN EPERYTHROZOON COCCOIDES AND PLASMODIUM BERGHEI IN THE MOUSE. Exp Parasitol. 1965 Apr;16:158–166. doi: 10.1016/0014-4894(65)90039-1. [DOI] [PubMed] [Google Scholar]
  8. PIERCE-CHASE C. H., FAUVE R. M., DUBOS R. CORYNEBACTERIAL PSEUDOTUBERCULOSIS IN MICE. I. COMPARATIVE SUSCEPTIBILITY OF MOUSE STRAINS TO EXPERIMENTAL INFECTION WITH CORYNEBACTERIUM KUTSCHERI. J Exp Med. 1964 Aug 1;120:267–281. doi: 10.1084/jem.120.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Plant J., Glynn A. A. Natural resistance to Salmonella infection, delayed hypersensitivity and Ir genes in different strains of mice. Nature. 1974 Mar 22;248(446):345–347. doi: 10.1038/248345a0. [DOI] [PubMed] [Google Scholar]
  10. RECHCIGL M., Jr, HESTON W. E. Tissue catalase activity in several C57BL substrains and in other strains of inbred mice. J Natl Cancer Inst. 1963 May;30:855–864. [PubMed] [Google Scholar]
  11. Robson H. G., Vas S. I. Resistance of inbred mice to Salmonella typhimurium. J Infect Dis. 1972 Oct;126(4):378–386. doi: 10.1093/infdis/126.4.378. [DOI] [PubMed] [Google Scholar]