Interleukin-1 and tumour necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-1 alpha (original) (raw)

. 1988 Sep;73(3):449–455.

Abstract

In rheumatoid arthritis there is a chronic immune and inflammatory reaction which can lead to the destruction of the diseased joint. Cytokine gene expression was studied in synovial cells using cDNA probes specific for human interleukin 1 (IL-1), -alpha and IL-1 beta, tumour necrosis factor (TNF), -alpha and TNF beta (lymphotoxin); protein molecules which induce cartilage degradation and bone resorption. In all cases studied, IL-1 mRNA was present in freshly isolated synovial cells from fluid or membrane. Compared to levels of IL-1 mRNA found in optimally activated normal blood mononuclear cells, the levels of IL-1 alpha mRNA were high in seven of the nine patients studied, whereas IL-1 beta mRNA, the dominant form in blood, was relatively lower. TNF alpha and TNF beta mRNA were also detected. Rheumatoid synovial cells, cultured without any stimulus, continued to express high levels of IL-1 alpha mRNA for up to 5 days, compared to the 24 h response of activated blood cells; IL-1 beta mRNA in culture was also prolonged. Cultures of rheumatoid joint cells produced IL-1 bioactivity, with roughly equal amounts of IL-1 alpha and beta, as assessed using neutralizing antibodies. TNF bioactivity was also detected which may be of importance as TNF induces the production of IL-1. The finding of these mediators produced in large amounts in active rheumatoid synovial cells suggests that mutually stimulatory cell interactions, mediated by these molecules, may be important in the chronic inflammation and tissue destruction in rheumatoid arthritis.

449

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acres R. B., Larsen A., Gillis S., Conlon P. J. Production of IL-1 alpha and IL-1 beta by clones of EBV transformed, human B cells. Mol Immunol. 1987 May;24(5):479–485. doi: 10.1016/0161-5890(87)90022-8. [DOI] [PubMed] [Google Scholar]
  2. Bird T. A., Saklatvala J. Identification of a common class of high affinity receptors for both types of porcine interleukin-1 on connective tissue cells. Nature. 1986 Nov 20;324(6094):263–266. doi: 10.1038/324263a0. [DOI] [PubMed] [Google Scholar]
  3. Buchan G., Barrett K., Fujita T., Taniguchi T., Maini R., Feldmann M. Detection of activated T cell products in the rheumatoid joint using cDNA probes to Interleukin-2 (IL-2) IL-2 receptor and IFN-gamma. Clin Exp Immunol. 1988 Feb;71(2):295–301. [PMC free article] [PubMed] [Google Scholar]
  4. Böyum A. Isolation of leucocytes from human blood. A two-phase system for removal of red cells with methylcellulose as erythrocyte-aggregating agent. Scand J Clin Lab Invest Suppl. 1968;97:9–29. [PubMed] [Google Scholar]
  5. Dayer J. M., Beutler B., Cerami A. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J Exp Med. 1985 Dec 1;162(6):2163–2168. doi: 10.1084/jem.162.6.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dayer J. M., Demczuk S. Cytokines and other mediators in rheumatoid arthritis. Springer Semin Immunopathol. 1984;7(4):387–413. doi: 10.1007/BF00201968. [DOI] [PubMed] [Google Scholar]
  7. Dayer J. M., Zavadil-Grob C., Ucla C., Mach B. Induction of human interleukin 1 mRNA measured by collagenase- and prostaglandin E2-stimulating activity in rheumatoid synovial cells. Eur J Immunol. 1984 Oct;14(10):898–901. doi: 10.1002/eji.1830141007. [DOI] [PubMed] [Google Scholar]
  8. Dinarello C. A., Cannon J. G., Wolff S. M., Bernheim H. A., Beutler B., Cerami A., Figari I. S., Palladino M. A., Jr, O'Connor J. V. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin 1. J Exp Med. 1986 Jun 1;163(6):1433–1450. doi: 10.1084/jem.163.6.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Espevik T., Nissen-Meyer J. A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J Immunol Methods. 1986 Dec 4;95(1):99–105. doi: 10.1016/0022-1759(86)90322-4. [DOI] [PubMed] [Google Scholar]
  10. Fontana A., Hengartner H., Weber E., Fehr K., Grob P. J., Cohen G. Interleukin 1 activity in the synovial fluid of patients with rheumatoid arthritis. Rheumatol Int. 1982;2(2):49–53. doi: 10.1007/BF00541245. [DOI] [PubMed] [Google Scholar]
  11. Garrett I. R., Durie B. G., Nedwin G. E., Gillespie A., Bringman T., Sabatini M., Bertolini D. R., Mundy G. R. Production of lymphotoxin, a bone-resorbing cytokine, by cultured human myeloma cells. N Engl J Med. 1987 Aug 27;317(9):526–532. doi: 10.1056/NEJM198708273170902. [DOI] [PubMed] [Google Scholar]
  12. Gowen M., Wood D. D., Ihrie E. J., McGuire M. K., Russell R. G. An interleukin 1 like factor stimulates bone resorption in vitro. Nature. 1983 Nov 24;306(5941):378–380. doi: 10.1038/306378a0. [DOI] [PubMed] [Google Scholar]
  13. Gray P. W., Aggarwal B. B., Benton C. V., Bringman T. S., Henzel W. J., Jarrett J. A., Leung D. W., Moffat B., Ng P., Svedersky L. P. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumour necrosis activity. Nature. 1984 Dec 20;312(5996):721–724. doi: 10.1038/312721a0. [DOI] [PubMed] [Google Scholar]
  14. Gubler U., Chua A. O., Stern A. S., Hellmann C. P., Vitek M. P., DeChiara T. M., Benjamin W. R., Collier K. J., Dukovich M., Familletti P. C. Recombinant human interleukin 1 alpha: purification and biological characterization. J Immunol. 1986 Apr 1;136(7):2492–2497. [PubMed] [Google Scholar]
  15. Kaczmarek L., Calabretta B., Baserga R. Expression of cell-cycle-dependent genes in phytohemagglutinin-stimulated human lymphocytes. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5375–5379. doi: 10.1073/pnas.82.16.5375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kurt-Jones E. A., Beller D. I., Mizel S. B., Unanue E. R. Identification of a membrane-associated interleukin 1 in macrophages. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1204–1208. doi: 10.1073/pnas.82.4.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. March C. J., Mosley B., Larsen A., Cerretti D. P., Braedt G., Price V., Gillis S., Henney C. S., Kronheim S. R., Grabstein K. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature. 1985 Jun 20;315(6021):641–647. doi: 10.1038/315641a0. [DOI] [PubMed] [Google Scholar]
  18. Paetkau V., Mills G., Gerhart S., Monticone V. Proliferation of murine thymic lymphocytes in vitro is mediated by the concanavalin A-induced release of a lymphokine (costimulator). J Immunol. 1976 Oct;117(4):1320–1324. [PubMed] [Google Scholar]
  19. Pennica D., Nedwin G. E., Hayflick J. S., Seeburg P. H., Derynck R., Palladino M. A., Kohr W. J., Aggarwal B. B., Goeddel D. V. Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature. 1984 Dec 20;312(5996):724–729. doi: 10.1038/312724a0. [DOI] [PubMed] [Google Scholar]
  20. Pettipher E. R., Higgs G. A., Henderson B. Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8749–8753. doi: 10.1073/pnas.83.22.8749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Philip R., Epstein L. B. Tumour necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself, gamma-interferon and interleukin-1. Nature. 1986 Sep 4;323(6083):86–89. doi: 10.1038/323086a0. [DOI] [PubMed] [Google Scholar]
  22. Rupp E. A., Cameron P. M., Ranawat C. S., Schmidt J. A., Bayne E. K. Specific bioactivities of monocyte-derived interleukin 1 alpha and interleukin 1 beta are similar to each other on cultured murine thymocytes and on cultured human connective tissue cells. J Clin Invest. 1986 Sep;78(3):836–839. doi: 10.1172/JCI112649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Saklatvala J., Sarsfield S. J., Townsend Y. Pig interleukin 1. Purification of two immunologically different leukocyte proteins that cause cartilage resorption, lymphocyte activation, and fever. J Exp Med. 1985 Oct 1;162(4):1208–1222. doi: 10.1084/jem.162.4.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schlesier M., Ramb-Lindhauer C., Gärtner M., Peter H. H. Analysis of T-cell cultures and clones from a patient with classic rheumatoid arthritis--evidence for the existence of autoreactive T-cell clones in blood and synovial fluid. Rheumatol Int. 1984;4 (Suppl):1–9. doi: 10.1007/BF00541272. [DOI] [PubMed] [Google Scholar]
  25. Tartakovsky B., Kovacs E. J., Takacs L., Durum S. K. T cell clone producing an IL 1-like activity after stimulation by antigen-presenting B cells. J Immunol. 1986 Jul 1;137(1):160–166. [PubMed] [Google Scholar]
  26. Thomson B. M., Mundy G. R., Chambers T. J. Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol. 1987 Feb 1;138(3):775–779. [PubMed] [Google Scholar]
  27. Turner M., Londei M., Feldmann M. Human T cells from autoimmune and normal individuals can produce tumor necrosis factor. Eur J Immunol. 1987 Dec;17(12):1807–1814. doi: 10.1002/eji.1830171220. [DOI] [PubMed] [Google Scholar]
  28. White B. A., Bancroft F. C. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem. 1982 Aug 10;257(15):8569–8572. [PubMed] [Google Scholar]