Transformation of Maize Cells and Regeneration of Fertile Transgenic Plants (original) (raw)

Abstract

A reproducible system for the generation of fertile, transgenic maize plants has been developed. Cells from embryogenic maize suspension cultures were transformed with the bacterial gene bar using microprojectile bombardment. Transformed calli were selected from the suspension cultures using the herbicide bialaphos. Integration of bar and activity of the enzyme phosphinothricin acetyltransferase (PAT) encoded by bar were confirmed in all bialaphos-resistant callus lines. Fertile transformed maize plants (R0) were regenerated, and of 53 progeny (R1) tested, 29 had PAT activity. All PAT-positive progeny analyzed contained bar. Localized application of herbicide to leaves of bar-transformed R0 and R1 plants resulted in no necrosis, confirming functional activity of PAT in the transgenic plants. Cotransformation experiments were performed using a mixture of two plasmids, one encoding PAT and one containing the nonselected gene encoding [beta]-glucuronidase. R0 plants regenerated from co-transformed callus expressed both genes. These results describe and confirm the development of a system for introduction of DNA into maize.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benfey P. N., Chua N. H. Regulated genes in transgenic plants. Science. 1989 Apr 14;244(4901):174–181. doi: 10.1126/science.244.4901.174. [DOI] [PubMed] [Google Scholar]
  2. Chomet P. S., Wessler S., Dellaporta S. L. Inactivation of the maize transposable element Activator (Ac) is associated with its DNA modification. EMBO J. 1987 Feb;6(2):295–302. doi: 10.1002/j.1460-2075.1987.tb04753.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Block M., De Brouwer D., Tenning P. Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants. Plant Physiol. 1989 Oct;91(2):694–701. doi: 10.1104/pp.91.2.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Finnegan E. J., Taylor B. H., Craig S., Dennis E. S. Transposable elements can be used to study cell lineages in transgenic plants. Plant Cell. 1989 Aug;1(8):757–764. doi: 10.1105/tpc.1.8.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fromm M. E., Taylor L. P., Walbot V. Stable transformation of maize after gene transfer by electroporation. 1986 Feb 27-Mar 5Nature. 319(6056):791–793. doi: 10.1038/319791a0. [DOI] [PubMed] [Google Scholar]
  6. Gasser C. S., Fraley R. T. Genetically engineering plants for crop improvement. Science. 1989 Jun 16;244(4910):1293–1299. doi: 10.1126/science.244.4910.1293. [DOI] [PubMed] [Google Scholar]
  7. Hauptmann R. M., Vasil V., Ozias-Akins P., Tabaeizadeh Z., Rogers S. G., Fraley R. T., Horsch R. B., Vasil I. K. Evaluation of selectable markers for obtaining stable transformants in the gramineae. Plant Physiol. 1988 Feb;86(2):602–606. doi: 10.1104/pp.86.2.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Klein T. M., Kornstein L., Sanford J. C., Fromm M. E. Genetic transformation of maize cells by particle bombardment. Plant Physiol. 1989 Sep;91(1):440–444. doi: 10.1104/pp.91.1.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kozak M. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res. 1984 Jan 25;12(2):857–872. doi: 10.1093/nar/12.2.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee B., Murdoch K., Topping J., Kreis M., Jones M. G. Transient gene expression in aleurone protoplasts isolated from developing caryopses of barley and wheat. Plant Mol Biol. 1989 Jul;13(1):21–29. doi: 10.1007/BF00027332. [DOI] [PubMed] [Google Scholar]
  11. Lyznik L. A., Ryan R. D., Ritchie S. W., Hodges T. K. Stable co-transformation of maize protoplasts with gusA and neo genes. Plant Mol Biol. 1989 Aug;13(2):151–161. doi: 10.1007/BF00016134. [DOI] [PubMed] [Google Scholar]
  12. Rhodes C. A., Pierce D. A., Mettler I. J., Mascarenhas D., Detmer J. J. Genetically transformed maize plants from protoplasts. Science. 1988 Apr 8;240(4849):204–207. doi: 10.1126/science.2832947. [DOI] [PubMed] [Google Scholar]
  13. Rocha-Sosa M., Sonnewald U., Frommer W., Stratmann M., Schell J., Willmitzer L. Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J. 1989 Jan;8(1):23–29. doi: 10.1002/j.1460-2075.1989.tb03344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Spena A., Aalen R. B., Schulze S. C. Cell-autonomous behavior of the rolC gene of Agrobacterium rhizogenes during leaf development: a visual assay for transposon excision in transgenic plants. Plant Cell. 1989 Dec;1(12):1157–1164. doi: 10.1105/tpc.1.12.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Thompson C. J., Movva N. R., Tizard R., Crameri R., Davies J. E., Lauwereys M., Botterman J. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 1987 Sep;6(9):2519–2523. doi: 10.1002/j.1460-2075.1987.tb02538.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Twell D., Klein T. M., Fromm M. E., McCormick S. Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol. 1989 Dec;91(4):1270–1274. doi: 10.1104/pp.91.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. White J., Chang S. Y., Bibb M. J., Bibb M. J. A cassette containing the bar gene of Streptomyces hygroscopicus: a selectable marker for plant transformation. Nucleic Acids Res. 1990 Feb 25;18(4):1062–1062. doi: 10.1093/nar/18.4.1062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Withers L. A., King P. J. Proline: A Novel Cryoprotectant for the Freeze Preservation of Cultured Cells of Zea mays L. Plant Physiol. 1979 Nov;64(5):675–678. doi: 10.1104/pp.64.5.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. van der Krol A. R., Mur L. A., Beld M., Mol J. N., Stuitje A. R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell. 1990 Apr;2(4):291–299. doi: 10.1105/tpc.2.4.291. [DOI] [PMC free article] [PubMed] [Google Scholar]