Fixed-bin analysis for statistical evaluation of continuous distributions of allelic data from VNTR loci, for use in forensic comparisons (original) (raw)

. 1991 May;48(5):841–855.

Abstract

The detection of DNA polymorphisms by RFLP analysis is having a major impact on identity testing in forensic science. At present, this approach is the best effort a forensic scientist can make to exclude an individual who has been falsely associated with an evidentiary sample found at a crime scene. When an analysis fails to exclude a suspect as a potential contributor of an evidentiary sample, a means should be provided to assess suitable weight to the putative match. Most important, the statistical analysis should not place undue weight on a genetic profile derived from an unknown sample that is attributed to an accused individual. The method must allow for limitations in conventional agarose-submarine-gel electrophoresis and Southern blotting procedure, limited sample population data, possible subpopulation differences, and potential sampling error. A conservative statistical method was developed based on arbitrarily defined fixed bins. This approach permits classification of continuous allelic data, provides for a simple and portable data-base system, and is unlikely to underestimate the frequency of occurrence of a set of alleles. This will help ensure that undue weight is not placed on a sample attributed to an accused individual.

841

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. C., Graves G., Budowle B. Polymerase chain reaction amplification products separated on rehydratable polyacrylamide gels and stained with silver. Biotechniques. 1989 Jul-Aug;7(7):736–744. [PubMed] [Google Scholar]
  2. Balazs I., Baird M., Clyne M., Meade E. Human population genetic studies of five hypervariable DNA loci. Am J Hum Genet. 1989 Feb;44(2):182–190. [PMC free article] [PubMed] [Google Scholar]
  3. Budowle B., Baechtel F. S. Modifications to improve the effectiveness of restriction fragment length polymorphism typing. Appl Theor Electrophor. 1990;1(4):181–187. [PubMed] [Google Scholar]
  4. Budowle B., Chakraborty R., Giusti A. M., Eisenberg A. J., Allen R. C. Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet. 1991 Jan;48(1):137–144. [PMC free article] [PubMed] [Google Scholar]
  5. Devlin B., Risch N., Roeder K. No excess of homozygosity at loci used for DNA fingerprinting. Science. 1990 Sep 21;249(4975):1416–1420. doi: 10.1126/science.2205919. [DOI] [PubMed] [Google Scholar]
  6. Elder J. K., Southern E. M. Measurement of DNA length by gel electrophoresis II: Comparison of methods for relating mobility to fragment length. Anal Biochem. 1983 Jan;128(1):227–231. doi: 10.1016/0003-2697(83)90369-x. [DOI] [PubMed] [Google Scholar]
  7. Gill P., Jeffreys A. J., Werrett D. J. Forensic application of DNA 'fingerprints'. Nature. 1985 Dec 12;318(6046):577–579. doi: 10.1038/318577a0. [DOI] [PubMed] [Google Scholar]
  8. Giusti A., Baird M., Pasquale S., Balazs I., Glassberg J. Application of deoxyribonucleic acid (DNA) polymorphisms to the analysis of DNA recovered from sperm. J Forensic Sci. 1986 Apr;31(2):409–417. [PubMed] [Google Scholar]
  9. Jeffreys A. J., Royle N. J., Wilson V., Wong Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature. 1988 Mar 17;332(6161):278–281. doi: 10.1038/332278a0. [DOI] [PubMed] [Google Scholar]
  10. Jeffreys A. J., Wilson V., Thein S. L. Individual-specific 'fingerprints' of human DNA. Nature. 1985 Jul 4;316(6023):76–79. doi: 10.1038/316076a0. [DOI] [PubMed] [Google Scholar]
  11. Kanter E., Baird M., Shaler R., Balazs I. Analysis of restriction fragment length polymorphisms in deoxyribonucleic acid (DNA) recovered from dried bloodstains. J Forensic Sci. 1986 Apr;31(2):403–408. [PubMed] [Google Scholar]
  12. Milner E. C., Lotshaw C. L., Willems van Dijk K., Charmley P., Concannon P., Schroeder H. W., Jr Isolation and mapping of a polymorphic DNA sequence pH30 on chromosome 4[HGM provisional no. D4S139]. Nucleic Acids Res. 1989 May 25;17(10):4002–4002. doi: 10.1093/nar/17.10.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nakamura Y., Carlson M., Krapcho K., White R. Isolation and mapping of a polymorphic DNA sequence (pMCT118) on chromosome 1p [D1S80]. Nucleic Acids Res. 1988 Oct 11;16(19):9364–9364. doi: 10.1093/nar/16.19.9364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nakamura Y., Culver M., Gill J., O'Connell P., Leppert M., Lathrop G. M., Lalouel J. M., White R. Isolation and mapping of a polymorphic DNA sequence pMLJ14 on chromosome 14 [D14S13]. Nucleic Acids Res. 1988 Jan 11;16(1):381–381. doi: 10.1093/nar/16.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nakamura Y., Gillilan S., O'Connell P., Leppert M., Lathrop G. M., Lalouel J. M., White R. Isolation and mapping of a polymorphic DNA sequence pYNH24 on chromosome 2 (D2S44). Nucleic Acids Res. 1987 Dec 10;15(23):10073–10073. doi: 10.1093/nar/15.23.10073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakamura Y., Leppert M., O'Connell P., Wolff R., Holm T., Culver M., Martin C., Fujimoto E., Hoff M., Kumlin E. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science. 1987 Mar 27;235(4796):1616–1622. doi: 10.1126/science.3029872. [DOI] [PubMed] [Google Scholar]
  17. Odelberg S. J., Plaetke R., Eldridge J. R., Ballard L., O'Connell P., Nakamura Y., Leppert M., Lalouel J. M., White R. Characterization of eight VNTR loci by agarose gel electrophoresis. Genomics. 1989 Nov;5(4):915–924. doi: 10.1016/0888-7543(89)90134-1. [DOI] [PubMed] [Google Scholar]
  18. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  19. Wainscoat J. S., Pilkington S., Peto T. E., Bell J. I., Higgs D. R. Allele-specific DNA identity patterns. Hum Genet. 1987 Apr;75(4):384–387. doi: 10.1007/BF00284114. [DOI] [PubMed] [Google Scholar]
  20. Waye J. S., England S. B., Willard H. F. Genomic organization of alpha satellite DNA on human chromosome 7: evidence for two distinct alphoid domains on a single chromosome. Mol Cell Biol. 1987 Jan;7(1):349–356. doi: 10.1128/mcb.7.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Willis C. E., Willis D. G., Holmquist G. P. An equation for DNA electrophoretic mobility in agarose gels. Appl Theor Electrophor. 1988;1(1):11–18. [PubMed] [Google Scholar]
  22. Wyman A. R., White R. A highly polymorphic locus in human DNA. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6754–6758. doi: 10.1073/pnas.77.11.6754. [DOI] [PMC free article] [PubMed] [Google Scholar]