Recessive inheritance of a relative fat pattern (original) (raw)

. 1989 Dec;45(6):917–925.

Abstract

We defined a relative-fat-pattern index (RFPI) as the ratio of subscapular skinfold thickness to the sum of subscapular and suprailiac skinfold thicknesses and computed RFPI for 774 adults (age greater than or equal to 25 years) in 59 pedigrees ascertained through cases of cardiovascular disease. Likelihood analysis of RFPI supported recessive inheritance of an allele with a frequency of 46%, which elevated mean RFPI from .412 to .533 when homozygous. The analysis apportioned the variance in RFPI as 42.3% due to the major locus, 9.5% due to polygenic inheritance, and 48.2% due to random environmental effects. Homozygotes for the recessive allele tended to have small suprailiac skinfold thicknesses rather than large subscapular skinfold thicknesses. Homozygotes were more frequent in younger than in older cases of obesity, coronary heart disease, essential hypertension, and diabetes mellitus; the increase was significant for all but diabetes.

917

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumgartner R. N., Roche A. F., Chumlea W. C., Siervogel R. M., Glueck C. J. Fatness and fat patterns: associations with plasma lipids and blood pressures in adults, 18 to 57 years of age. Am J Epidemiol. 1987 Oct;126(4):614–628. doi: 10.1093/oxfordjournals.aje.a114701. [DOI] [PubMed] [Google Scholar]
  2. Baumgartner R. N., Roche A. F., Guo S., Lohman T., Boileau R. A., Slaughter M. H. Adipose tissue distribution: the stability of principal components by sex, ethnicity and maturation stage. Hum Biol. 1986 Oct;58(5):719–735. [PubMed] [Google Scholar]
  3. Blair D., Habicht J. P., Sims E. A., Sylwester D., Abraham S. Evidence for an increased risk for hypertension with centrally located body fat and the effect of race and sex on this risk. Am J Epidemiol. 1984 Apr;119(4):526–540. doi: 10.1093/oxfordjournals.aje.a113770. [DOI] [PubMed] [Google Scholar]
  4. Bouchard C., Pérusse L., Leblanc C., Tremblay A., Thériault G. Inheritance of the amount and distribution of human body fat. Int J Obes. 1988;12(3):205–215. [PubMed] [Google Scholar]
  5. Boyle C. R., Elston R. C. Multifactorial genetic models for quantitative traits in humans. Biometrics. 1979 Mar;35(1):55–68. [PubMed] [Google Scholar]
  6. Bray G. A. Complications of obesity. Ann Intern Med. 1985 Dec;103(6 ):1052–1062. doi: 10.7326/0003-4819-103-6-1052. [DOI] [PubMed] [Google Scholar]
  7. Burton B. T., Foster W. R., Hirsch J., Van Itallie T. B. Health implications of obesity: an NIH Consensus Development Conference. Int J Obes. 1985;9(3):155–170. [PubMed] [Google Scholar]
  8. Dustan H. P. Obesity and hypertension. Ann Intern Med. 1985 Dec;103(6 ):1047–1049. doi: 10.7326/0003-4819-103-6-1047. [DOI] [PubMed] [Google Scholar]
  9. Elston R. C., Stewart J. A general model for the genetic analysis of pedigree data. Hum Hered. 1971;21(6):523–542. doi: 10.1159/000152448. [DOI] [PubMed] [Google Scholar]
  10. Garn S. M., Sullivan T. V., Hawthorne V. M. Persistence of relative fatness at different body sites. Hum Biol. 1988 Feb;60(1):43–53. [PubMed] [Google Scholar]
  11. Hasstedt S. J. A mixed-model likelihood approximation on large pedigrees. Comput Biomed Res. 1982 Jun;15(3):295–307. doi: 10.1016/0010-4809(82)90064-7. [DOI] [PubMed] [Google Scholar]
  12. Hasstedt S. J., Moll P. P. Estimation of genetic model parameters: variables correlated with a quantitative phenotype exhibiting major locus inheritance. Genet Epidemiol. 1989;6(2):319–332. doi: 10.1002/gepi.1370060203. [DOI] [PubMed] [Google Scholar]
  13. Hubert H. B., Feinleib M., McNamara P. M., Castelli W. P. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983 May;67(5):968–977. doi: 10.1161/01.cir.67.5.968. [DOI] [PubMed] [Google Scholar]
  14. Iverius P. H., Brunzell J. D. Obesity and common genetic metabolic disorders. Ann Intern Med. 1985 Dec;103(6 ):1050–1051. doi: 10.7326/0003-4819-103-6-1050. [DOI] [PubMed] [Google Scholar]
  15. Karlin S., Williams P. T. Permutation methods for the structured exploratory data analysis (SEDA) of familial trait values. Am J Hum Genet. 1984 Jul;36(4):873–898. [PMC free article] [PubMed] [Google Scholar]
  16. Kral J. G. Morbid obesity and related health risks. Ann Intern Med. 1985 Dec;103(6 ):1043–1047. doi: 10.7326/0003-4819-103-6-1043. [DOI] [PubMed] [Google Scholar]
  17. Lalouel J. M., Rao D. C., Morton N. E., Elston R. C. A unified model for complex segregation analysis. Am J Hum Genet. 1983 Sep;35(5):816–826. [PMC free article] [PubMed] [Google Scholar]
  18. Morton N. E., MacLean C. J. Analysis of family resemblance. 3. Complex segregation of quantitative traits. Am J Hum Genet. 1974 Jul;26(4):489–503. [PMC free article] [PubMed] [Google Scholar]
  19. Mueller W. H. The changes with age of the anatomical distribution of fat. Soc Sci Med. 1982;16(2):191–196. doi: 10.1016/0277-9536(82)90022-3. [DOI] [PubMed] [Google Scholar]
  20. Ramirez M. E. Biological variability in a migrating isolate: Tokelau effects of migration of fat patterning in adults. Hum Biol. 1987 Dec;59(6):901–909. [PubMed] [Google Scholar]
  21. Stern M. P., Haffner S. M. Body fat distribution and hyperinsulinemia as risk factors for diabetes and cardiovascular disease. Arteriosclerosis. 1986 Mar-Apr;6(2):123–130. doi: 10.1161/01.atv.6.2.123. [DOI] [PubMed] [Google Scholar]
  22. VAGUE J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr. 1956 Jan-Feb;4(1):20–34. doi: 10.1093/ajcn/4.1.20. [DOI] [PubMed] [Google Scholar]