Linkage to D3S47 (C17) in one large autosomal dominant retinitis pigmentosa family and exclusion in another: confirmation of genetic heterogeneity (original) (raw)

. 1990 Sep;47(3):536–541.

Abstract

Recently Dryja and his co-workers observed a mutation in the 23d codon of the rhodopsin gene in a proportion of autosomal dominant retinitis pigmentosa (ADRP) patients. Linkage analysis with a rhodopsin-linked probe C17 (D3S47) was carried out in two large British ADRP families, one with diffuse-type (D-type) RP and the other with regional-type (R-type) RP. Significantly positive lod scores (lod score maximum [Zmax] = +5.58 at recombination fraction [theta] = .0) were obtained between C17 and our D-type ADRP family showing complete penetrance. Sequence and oligonucleotide analysis has, however, shown that no point mutation at the 23d codon exists in affected individuals in our complete-penetrance pedigree, indicating that another rhodopsin mutation is probably responsible for ADRP in this family. Significantly negative lod scores (Z less than -2 at theta = .045) were, however, obtained between C17 and our R-type family which showed incomplete penetrance. Previous results presented by this laboratory also showed no linkage between C17 and another large British R-type ADRP family with incomplete penetrance. This confirms genetic heterogeneity. Some types of ADRP are being caused by different mutations in the rhodopsin locus (3q21-24) or another tightly linked gene in this region, while other types of ADRP are the result of mutations elsewhere in the genome.

536

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arden G. B., Carter R. M., Hogg C. R., Powell D. J., Ernst W. J., Clover G. M., Lyness A. L., Quinlan M. P. Rod and cone activity in patients with dominantly inherited retinitis pigmentosa: comparisons between psychophysical and electroretinographic measurements. Br J Ophthalmol. 1983 Jul;67(7):405–418. doi: 10.1136/bjo.67.7.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attwood J., Bryant S. A computer program to make linkage analysis with LIPED and LINKAGE easier to perform and less prone to input errors. Ann Hum Genet. 1988 Jul;52(Pt 3):259–259. doi: 10.1111/j.1469-1809.1988.tb01103.x. [DOI] [PubMed] [Google Scholar]
  3. Bundey S., Crews S. J. A study of retinitis pigmentosa in the City of Birmingham. II Clinical and genetic heterogeneity. J Med Genet. 1984 Dec;21(6):421–428. doi: 10.1136/jmg.21.6.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daiger S. P., Humphries M. M., Giesenschlag N., Sharp E., McWilliam P., Farrer J., Bradley D., Kenna P., McConnell D. J., Sparkes R. S. Linkage analysis of human chromosome 4: exclusion of autosomal dominant retinitis pigmentosa (ADRP) and detection of new linkage groups. Cytogenet Cell Genet. 1989;50(4):181–187. doi: 10.1159/000132758. [DOI] [PubMed] [Google Scholar]
  5. Dryja T. P., McGee T. L., Reichel E., Hahn L. B., Cowley G. S., Yandell D. W., Sandberg M. A., Berson E. L. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990 Jan 25;343(6256):364–366. doi: 10.1038/343364a0. [DOI] [PubMed] [Google Scholar]
  6. Farber M. D., Fishman G. A., Weiss R. A. Autosomal dominantly inherited retinitis pigmentosa. Visual acuity loss by subtype. Arch Ophthalmol. 1985 Apr;103(4):524–528. doi: 10.1001/archopht.1985.01050040066019. [DOI] [PubMed] [Google Scholar]
  7. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  8. Inglehearn C. F., Jay M., Lester D. H., Bashir R., Jay B., Bird A. C., Wright A. F., Evans H. J., Papiha S. S., Bhattacharya S. S. No evidence for linkage between late onset autosomal dominant retinitis pigmentosa and chromosome 3 locus D3S47 (C17): evidence for genetic heterogeneity. Genomics. 1990 Jan;6(1):168–173. doi: 10.1016/0888-7543(90)90462-4. [DOI] [PubMed] [Google Scholar]
  9. Kemp C. M., Faulkner D. J., Jacobson S. G. Visual pigment levels in retinitis pigmentosa. Trans Ophthalmol Soc U K. 1983;103(Pt 4):453–457. [PubMed] [Google Scholar]
  10. Kemp C. M., Jacobson S. G., Faulkner D. J. Two types of visual dysfunction in autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1988 Aug;29(8):1235–1241. [PubMed] [Google Scholar]
  11. Lyness A. L., Ernst W., Quinlan M. P., Clover G. M., Arden G. B., Carter R. M., Bird A. C., Parker J. A. A clinical, psychophysical, and electroretinographic survey of patients with autosomal dominant retinitis pigmentosa. Br J Ophthalmol. 1985 May;69(5):326–339. doi: 10.1136/bjo.69.5.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Massof R. W., Finkelstein D. Two forms of autosomal dominant primary retinitis pigmentosa. Doc Ophthalmol. 1981 Nov;51(4):289–346. doi: 10.1007/BF00143336. [DOI] [PubMed] [Google Scholar]
  13. McWilliam P., Farrar G. J., Kenna P., Bradley D. G., Humphries M. M., Sharp E. M., McConnell D. J., Lawler M., Sheils D., Ryan C. Autosomal dominant retinitis pigmentosa (ADRP): localization of an ADRP gene to the long arm of chromosome 3. Genomics. 1989 Oct;5(3):619–622. doi: 10.1016/0888-7543(89)90031-1. [DOI] [PubMed] [Google Scholar]
  14. Merin S., Auerbach E. Retinitis pigmentosa. Surv Ophthalmol. 1976 Mar-Apr;20(5):303–346. doi: 10.1016/s0039-6257(96)90001-6. [DOI] [PubMed] [Google Scholar]
  15. Nathans J., Hogness D. S. Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4851–4855. doi: 10.1073/pnas.81.15.4851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nathans J., Piantanida T. P., Eddy R. L., Shows T. B., Hogness D. S. Molecular genetics of inherited variation in human color vision. Science. 1986 Apr 11;232(4747):203–210. doi: 10.1126/science.3485310. [DOI] [PubMed] [Google Scholar]
  17. Naylor S. L., Bishop D. T. Report of the committee on the genetic constitution of chromosome 3. Cytogenet Cell Genet. 1989;51(1-4):106–120. doi: 10.1159/000132783. [DOI] [PubMed] [Google Scholar]
  18. Olsson J. E., Samanns C., Jimenez J., Pongratz J., Chand A., Watty A., Seuchter S. A., Denton M., Gal A. Gene of type II autosomal dominant retinitis pigmentosa maps on the long arm of chromosome 3. Am J Med Genet. 1990 Apr;35(4):595–599. doi: 10.1002/ajmg.1320350434. [DOI] [PubMed] [Google Scholar]
  19. Ott J., Bhattacharya S., Chen J. D., Denton M. J., Donald J., Dubay C., Farrar G. J., Fishman G. A., Frey D., Gal A. Localizing multiple X chromosome-linked retinitis pigmentosa loci using multilocus homogeneity tests. Proc Natl Acad Sci U S A. 1990 Jan;87(2):701–704. doi: 10.1073/pnas.87.2.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ott J. Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies. Am J Hum Genet. 1974 Sep;26(5):588–597. [PMC free article] [PubMed] [Google Scholar]
  21. Richardson C. C. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage-infected Escherichia coli. Proc Natl Acad Sci U S A. 1965 Jul;54(1):158–165. doi: 10.1073/pnas.54.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sealey P. G., Whittaker P. A., Southern E. M. Removal of repeated sequences from hybridisation probes. Nucleic Acids Res. 1985 Mar 25;13(6):1905–1922. doi: 10.1093/nar/13.6.1905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  24. Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989 Mar;44(3):388–396. [PMC free article] [PubMed] [Google Scholar]