Ridges and rivers: a test of competing hypotheses of Amazonian diversification using a dart-poison frog (Epipedobates femoralis) (original) (raw)

Abstract

Mitochondrial DNA cytochrome b sequence data from a dart-poison frog, Epipedobates femoralis, were used to test two hypotheses of Amazonian diversification: the riverine barrier and the ridge hypotheses. Samples were derived from sites located on both banks of the Rio Juruá and on both sides of the Iquitos Arch in western Amazonia. The phylogeographic structure was inconsistent with predictions of the riverine barrier hypothesis. Haplotypes from opposite river banks did not form monophyletic clades in any of our phylogenetic analyses, nor was the topology within major clades consistent with the riverine hypothesis. Further, the greatest differentiation between paired sites on opposite banks was not at the river mouth where the strongest barrier to gene flow was predicted to occur. The results instead were consistent with the hypothesis that ancient ridges (arches), no longer evident on the landscape, have shaped the phylogeographic relationships of Amazonian taxa. Two robustly supported clades map onto opposite sides of the Iquitos Arch. The mean haplotypic divergence between the two clades, in excess of 12%, suggests that this cladogenic event dates to between five and 15 million years ago. These estimates span a period of major orogenesis in western South America and presumably the formation of these ancient ridges.

Full Text

The Full Text of this article is available as a PDF (166.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown W. M., Prager E. M., Wang A., Wilson A. C. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol. 1982;18(4):225–239. doi: 10.1007/BF01734101. [DOI] [PubMed] [Google Scholar]
  2. Cunningham C. W. Is congruence between data partitions a reliable predictor of phylogenetic accuracy? Empirically testing an iterative procedure for choosing among phylogenetic methods. Syst Biol. 1997 Sep;46(3):464–478. doi: 10.1093/sysbio/46.3.464. [DOI] [PubMed] [Google Scholar]
  3. Gentry A. H. Tree species richness of upper Amazonian forests. Proc Natl Acad Sci U S A. 1988 Jan;85(1):156–159. doi: 10.1073/pnas.85.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Irwin D. M., Kocher T. D., Wilson A. C. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991 Feb;32(2):128–144. doi: 10.1007/BF02515385. [DOI] [PubMed] [Google Scholar]
  5. Kocher T. D., Thomas W. K., Meyer A., Edwards S. V., Päbo S., Villablanca F. X., Wilson A. C. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6196–6200. doi: 10.1073/pnas.86.16.6196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Martin A. P., Naylor G. J., Palumbi S. R. Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature. 1992 May 14;357(6374):153–155. doi: 10.1038/357153a0. [DOI] [PubMed] [Google Scholar]
  7. Patton J. L., Da Silva M. N., Malcolm J. R. Hierarchical genetic structure and gene flow in three sympatric species of Amazonian rodents. Mol Ecol. 1996 Apr;5(2):229–238. doi: 10.1111/j.1365-294x.1996.tb00310.x. [DOI] [PubMed] [Google Scholar]
  8. Peres C. A., Patton J. L., da Silva M. N. Riverine barriers and gene flow in Amazonian saddle-back tamarins. Folia Primatol (Basel) 1996;67(3):113–124. doi: 10.1159/000157213. [DOI] [PubMed] [Google Scholar]
  9. Räsänen M. E., Salo J. S., Kalliola R. J. Fluvial perturbance in the Western Amazon basin: regulation by long-term sub-andean tectonics. Science. 1987 Dec 4;238(4832):1398–1401. doi: 10.1126/science.238.4832.1398. [DOI] [PubMed] [Google Scholar]
  10. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  11. Shields G. F., Wilson A. C. Calibration of mitochondrial DNA evolution in geese. J Mol Evol. 1987;24(3):212–217. doi: 10.1007/BF02111234. [DOI] [PubMed] [Google Scholar]
  12. Slatkin M. Detecting small amounts of gene flow from phylogenies of alleles. Genetics. 1989 Mar;121(3):609–612. doi: 10.1093/genetics/121.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Summers K., Bermingham E., Weigt L., McCafferty S., Dahlstrom L. Phenotypic and genetic divergence in three species of dart-poison frogs with contrasting parental behavior. J Hered. 1997 Jan-Feb;88(1):8–13. doi: 10.1093/oxfordjournals.jhered.a023065. [DOI] [PubMed] [Google Scholar]
  14. Tan A. M., Wake D. B. MtDNA phylogeography of the California newt, Taricha torosa (Caudata, Salamandridae). Mol Phylogenet Evol. 1995 Dec;4(4):383–394. doi: 10.1006/mpev.1995.1036. [DOI] [PubMed] [Google Scholar]
  15. Williams P. L., Fitch W. M. Phylogeny determination using dynamically weighted parsimony method. Methods Enzymol. 1990;183:615–626. doi: 10.1016/0076-6879(90)83040-g. [DOI] [PubMed] [Google Scholar]
  16. da Silva M. N., Patton J. L. Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha). Mol Phylogenet Evol. 1993 Sep;2(3):243–255. doi: 10.1006/mpev.1993.1023. [DOI] [PubMed] [Google Scholar]