Coadaptation in mother and infant regulated by a paternally expressed imprinted gene (original) (raw)
Abstract
This study investigates how a targeted mutation of a paternally expressed imprinted gene regulates multiple aspects of foetal and post-natal development including placental size, foetal growth, suckling and post-natal growth, weaning age and puberty onset. This same mutation in a mother impairs maternal reproductive success with reduced maternal care, reduced maternal food intake during pregnancy, and impaired milk let-down, which in turn reduces infant growth and delays weaning and onset of puberty. The significance of these coadaptive traits being synchronized in mother and offspring by the same paternally expressed imprinted gene ensures that offspring that have extracted 'good' maternal nurturing will themselves be both well provisioned and genetically predisposed towards 'good' mothering.
Full Text
The Full Text of this article is available as a PDF (139.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bridges R. S., Robertson M. C., Shiu R. P., Sturgis J. D., Henriquez B. M., Mann P. E. Central lactogenic regulation of maternal behavior in rats: steroid dependence, hormone specificity, and behavioral potencies of rat prolactin and rat placental lactogen I. Endocrinology. 1997 Feb;138(2):756–763. doi: 10.1210/endo.138.2.4921. [DOI] [PubMed] [Google Scholar]
- Constância Miguel, Hemberger Myriam, Hughes Jennifer, Dean Wendy, Ferguson-Smith Anne, Fundele Reinald, Stewart Francesca, Kelsey Gavin, Fowden Abigail, Sibley Colin. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature. 2002 Jun 27;417(6892):945–948. doi: 10.1038/nature00819. [DOI] [PubMed] [Google Scholar]
- Haig D., Graham C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell. 1991 Mar 22;64(6):1045–1046. doi: 10.1016/0092-8674(91)90256-x. [DOI] [PubMed] [Google Scholar]
- Haig D. Parental antagonism, relatedness asymmetries, and genomic imprinting. Proc Biol Sci. 1997 Nov 22;264(1388):1657–1662. doi: 10.1098/rspb.1997.0230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kay G. F., Barton S. C., Surani M. A., Rastan S. Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Cell. 1994 Jun 3;77(5):639–650. doi: 10.1016/0092-8674(94)90049-3. [DOI] [PubMed] [Google Scholar]
- Killian J. K., Byrd J. C., Jirtle J. V., Munday B. L., Stoskopf M. K., MacDonald R. G., Jirtle R. L. M6P/IGF2R imprinting evolution in mammals. Mol Cell. 2000 Apr;5(4):707–716. doi: 10.1016/s1097-2765(00)80249-x. [DOI] [PubMed] [Google Scholar]
- Killian J. K., Nolan C. M., Stewart N., Munday B. L., Andersen N. A., Nicol S., Jirtle R. L. Monotreme IGF2 expression and ancestral origin of genomic imprinting. J Exp Zool. 2001 Aug 15;291(2):205–212. doi: 10.1002/jez.1070. [DOI] [PubMed] [Google Scholar]
- Kohda T., Asai A., Kuroiwa Y., Kobayashi S., Aisaka K., Nagashima G., Yoshida M. C., Kondo Y., Kagiyama N., Kirino T. Tumour suppressor activity of human imprinted gene PEG3 in a glioma cell line. Genes Cells. 2001 Mar;6(3):237–247. doi: 10.1046/j.1365-2443.2001.00412.x. [DOI] [PubMed] [Google Scholar]
- Kuroiwa Y., Kaneko-Ishino T., Kagitani F., Kohda T., Li L. L., Tada M., Suzuki R., Yokoyama M., Shiroishi T., Wakana S. Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nat Genet. 1996 Feb;12(2):186–190. doi: 10.1038/ng0296-186. [DOI] [PubMed] [Google Scholar]
- Li L., Keverne E. B., Aparicio S. A., Ishino F., Barton S. C., Surani M. A. Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science. 1999 Apr 9;284(5412):330–333. doi: 10.1126/science.284.5412.330. [DOI] [PubMed] [Google Scholar]
- Lloyd V. K., Sinclair D. A., Grigliatti T. A. Genomic imprinting and position-effect variegation in Drosophila melanogaster. Genetics. 1999 Apr;151(4):1503–1516. doi: 10.1093/genetics/151.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyon M. F. X-chromosome inactivation. Curr Biol. 1999 Apr 8;9(7):R235–R237. doi: 10.1016/s0960-9822(99)80151-1. [DOI] [PubMed] [Google Scholar]
- Mak Winifred, Baxter Jonathon, Silva Jose, Newall Alistair E., Otte Arie P., Brockdorff Neil. Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Curr Biol. 2002 Jun 25;12(12):1016–1020. doi: 10.1016/s0960-9822(02)00892-8. [DOI] [PubMed] [Google Scholar]
- Pardo-Manuel de Villena F., de la Casa-Esperón E., Sapienza C. Natural selection and the function of genome imprinting: beyond the silenced minority. Trends Genet. 2000 Dec;16(12):573–579. doi: 10.1016/s0168-9525(00)02134-x. [DOI] [PubMed] [Google Scholar]
- Reik W., Dean W., Walter J. Epigenetic reprogramming in mammalian development. Science. 2001 Aug 10;293(5532):1089–1093. doi: 10.1126/science.1063443. [DOI] [PubMed] [Google Scholar]
- Relaix F., Wei X. J., Wu X., Sassoon D. A. Peg3/Pw1 is an imprinted gene involved in the TNF-NFkappaB signal transduction pathway. Nat Genet. 1998 Mar;18(3):287–291. doi: 10.1038/ng0398-287. [DOI] [PubMed] [Google Scholar]
- Russell J. A., Douglas A. J., Ingram C. D. Brain preparations for maternity--adaptive changes in behavioral and neuroendocrine systems during pregnancy and lactation. An overview. Prog Brain Res. 2001;133:1–38. doi: 10.1016/s0079-6123(01)33002-9. [DOI] [PubMed] [Google Scholar]
- Smith J. E., Jansen A. S., Gilbey M. P., Loewy A. D. CNS cell groups projecting to sympathetic outflow of tail artery: neural circuits involved in heat loss in the rat. Brain Res. 1998 Mar 9;786(1-2):153–164. doi: 10.1016/s0006-8993(97)01437-6. [DOI] [PubMed] [Google Scholar]
- Springer Mark S., Murphy William J., Eizirik Eduardo, O'Brien Stephen J. Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci U S A. 2003 Jan 27;100(3):1056–1061. doi: 10.1073/pnas.0334222100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wade G. N. Sex steroids and energy balance: sites and mechanisms of action. Ann N Y Acad Sci. 1986;474:389–399. doi: 10.1111/j.1749-6632.1986.tb28029.x. [DOI] [PubMed] [Google Scholar]
- Werren J. H., Hatcher M. J. Maternal-zygotic gene conflict over sex determination: effects of inbreeding. Genetics. 2000 Jul;155(3):1469–1479. doi: 10.1093/genetics/155.3.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolf J. B. Gene interactions from maternal effects. Evolution. 2000 Dec;54(6):1882–1898. doi: 10.1111/j.0014-3820.2000.tb01235.x. [DOI] [PubMed] [Google Scholar]
- Woodside B., Abizaid A., Walker C. Changes in leptin levels during lactation: implications for lactational hyperphagia and anovulation. Horm Behav. 2000 Jun;37(4):353–365. doi: 10.1006/hbeh.2000.1598. [DOI] [PubMed] [Google Scholar]
- Yamaguchi Atsushi, Taniguchi Manabu, Hori Osamu, Ogawa Satoshi, Tojo Nobuteru, Matsuoka Nobuya, Miyake Shin-ichi, Kasai Kousuke, Sugimoto Hisashi, Tamatani Michio. Peg3/Pw1 is involved in p53-mediated cell death pathway in brain ischemia/hypoxia. J Biol Chem. 2001 Oct 25;277(1):623–629. doi: 10.1074/jbc.M107435200. [DOI] [PubMed] [Google Scholar]
- Yoder J. A., Walsh C. P., Bestor T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997 Aug;13(8):335–340. doi: 10.1016/s0168-9525(97)01181-5. [DOI] [PubMed] [Google Scholar]
- Zeng S-M, Yankowitz J. X-inactivation patterns in human embryonic and extra-embryonic tissues. Placenta. 2003 Feb-Mar;24(2-3):270–275. doi: 10.1053/plac.2002.0889. [DOI] [PubMed] [Google Scholar]