The molecular basis of partial penetrance of splicing mutations in cystic fibrosis (original) (raw)

Abstract

The splicing variant, 5T allele, in intron 8 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene was shown to be associated with partial penetrance of the clinical expression. This splicing variant leads to two possible transcripts: one normal and the other aberrantly spliced that lacks exon 9. The aim of this study was to analyze the molecular basis of the partial penetrance in individuals carrying the 5T allele. We analyzed the level of the correctly spliced RNA transcribed from the 5T allele in nasal and epididymal epithelium and correlated it with disease expression. Semiquantitative nondifferential reverse-transcriptase-PCR showed a considerable variability (6%-37%) in the total level of correctly spliced RNA transcribed from the 5T allele in nasal epithelium from 11 patients. A significant nonlinear correlation (r = .82, P = .002) between the level of the normal CFTR transcripts and the severity of lung disease was shown. No individuals with normal lung function and minimal or no lung disease (FEV1 >80% predicted) had <25% of normal transcripts, and individuals with <15% of normal transcripts did not have FEV1 >80%. The level of normal transcripts in epididymal epithelial cells from four infertile males with congenital bilateral absence of the vas deferens was low (6%-24%). In infertile males with normal lung function the level of correctly spliced transcripts in the nasal epithelium was higher than the level in the epididymal epithelium. These results indicate that there is variability in the efficiency of the splicing mechanism, among different individuals and between different organs of the same individual. This variability provides the molecular basis of the partial penetrance of cystic fibrosis disease in patients carrying the 5T allele.

87

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anguiano A., Oates R. D., Amos J. A., Dean M., Gerrard B., Stewart C., Maher T. A., White M. B., Milunsky A. Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis. JAMA. 1992 Apr 1;267(13):1794–1797. [PubMed] [Google Scholar]
  2. Arredondo-Vega F. X., Santisteban I., Kelly S., Schlossman C. M., Umetsu D. T., Hershfield M. S. Correct splicing despite mutation of the invariant first nucleotide of a 5' splice site: a possible basis for disparate clinical phenotypes in siblings with adenosine deaminase deficiency. Am J Hum Genet. 1994 May;54(5):820–830. [PMC free article] [PubMed] [Google Scholar]
  3. Casals T., Bassas L., Ruiz-Romero J., Chillón M., Giménez J., Ramos M. D., Tapia G., Narváez H., Nunes V., Estivill X. Extensive analysis of 40 infertile patients with congenital absence of the vas deferens: in 50% of cases only one CFTR allele could be detected. Hum Genet. 1995 Feb;95(2):205–211. doi: 10.1007/BF00209403. [DOI] [PubMed] [Google Scholar]
  4. Chehab F. F., Johnson J., Louie E., Goossens M., Kawasaki E., Erlich H. A dimorphic 4-bp repeat in the cystic fibrosis gene is in absolute linkage disequilibrium with the delta F508 mutation: implications for prenatal diagnosis and mutation origin. Am J Hum Genet. 1991 Feb;48(2):223–226. [PMC free article] [PubMed] [Google Scholar]
  5. Chillón M., Casals T., Mercier B., Bassas L., Lissens W., Silber S., Romey M. C., Ruiz-Romero J., Verlingue C., Claustres M. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med. 1995 Jun 1;332(22):1475–1480. doi: 10.1056/NEJM199506013322204. [DOI] [PubMed] [Google Scholar]
  6. Chillón M., Dörk T., Casals T., Giménez J., Fonknechten N., Will K., Ramos D., Nunes V., Estivill X. A novel donor splice site in intron 11 of the CFTR gene, created by mutation 1811+1.6kbA-->G, produces a new exon: high frequency in Spanish cystic fibrosis chromosomes and association with severe phenotype. Am J Hum Genet. 1995 Mar;56(3):623–629. [PMC free article] [PubMed] [Google Scholar]
  7. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  8. Chu C. S., Trapnell B. C., Curristin S., Cutting G. R., Crystal R. G. Genetic basis of variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. Nat Genet. 1993 Feb;3(2):151–156. doi: 10.1038/ng0293-151. [DOI] [PubMed] [Google Scholar]
  9. Costes B., Girodon E., Ghanem N., Flori E., Jardin A., Soufir J. C., Goossens M. Frequent occurrence of the CFTR intron 8 (TG)n 5T allele in men with congenital bilateral absence of the vas deferens. Eur J Hum Genet. 1995;3(5):285–293. doi: 10.1159/000472312. [DOI] [PubMed] [Google Scholar]
  10. Culard J. F., Desgeorges M., Costa P., Laussel M., Razakatzara G., Navratil H., Demaille J., Claustres M. Analysis of the whole CFTR coding regions and splice junctions in azoospermic men with congenital bilateral aplasia of epididymis or vas deferens. Hum Genet. 1994 Apr;93(4):467–470. doi: 10.1007/BF00201678. [DOI] [PubMed] [Google Scholar]
  11. Highsmith W. E., Burch L. H., Zhou Z., Olsen J. C., Boat T. E., Spock A., Gorvoy J. D., Quittel L., Friedman K. J., Silverman L. M. A novel mutation in the cystic fibrosis gene in patients with pulmonary disease but normal sweat chloride concentrations. N Engl J Med. 1994 Oct 13;331(15):974–980. doi: 10.1056/NEJM199410133311503. [DOI] [PubMed] [Google Scholar]
  12. Jarvi K., Zielenski J., Wilschanski M., Durie P., Buckspan M., Tullis E., Markiewicz D., Tsui L. C. Cystic fibrosis transmembrane conductance regulator and obstructive azoospermia. Lancet. 1995 Jun 17;345(8964):1578–1578. doi: 10.1016/s0140-6736(95)91131-6. [DOI] [PubMed] [Google Scholar]
  13. Kerem B. S., Buchanan J. A., Durie P., Corey M. L., Levison H., Rommens J. M., Buchwald M., Tsui L. C. DNA marker haplotype association with pancreatic sufficiency in cystic fibrosis. Am J Hum Genet. 1989 Jun;44(6):827–834. [PMC free article] [PubMed] [Google Scholar]
  14. Kerem B., Kerem E. The molecular basis for disease variability in cystic fibrosis. Eur J Hum Genet. 1996;4(2):65–73. doi: 10.1159/000472174. [DOI] [PubMed] [Google Scholar]
  15. Kerem B., Rommens J. M., Buchanan J. A., Markiewicz D., Cox T. K., Chakravarti A., Buchwald M., Tsui L. C. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989 Sep 8;245(4922):1073–1080. doi: 10.1126/science.2570460. [DOI] [PubMed] [Google Scholar]
  16. Kerem E., Kalman Y. M., Yahav Y., Shoshani T., Abeliovich D., Szeinberg A., Rivlin J., Blau H., Tal A., Ben-Tur L. Highly variable incidence of cystic fibrosis and different mutation distribution among different Jewish ethnic groups in Israel. Hum Genet. 1995 Aug;96(2):193–197. doi: 10.1007/BF00207378. [DOI] [PubMed] [Google Scholar]
  17. Kishimoto T. K., O'Conner K., Springer T. A. Leukocyte adhesion deficiency. Aberrant splicing of a conserved integrin sequence causes a moderate deficiency phenotype. J Biol Chem. 1989 Feb 25;264(6):3588–3595. [PubMed] [Google Scholar]
  18. McInnes B., Potier M., Wakamatsu N., Melancon S. B., Klavins M. H., Tsuji S., Mahuran D. J. An unusual splicing mutation in the HEXB gene is associated with dramatically different phenotypes in patients from different racial backgrounds. J Clin Invest. 1992 Aug;90(2):306–314. doi: 10.1172/JCI115863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mercier B., Verlingue C., Lissens W., Silber S. J., Novelli G., Bonduelle M., Audrézet M. P., Férec C. Is congenital bilateral absence of vas deferens a primary form of cystic fibrosis? Analyses of the CFTR gene in 67 patients. Am J Hum Genet. 1995 Jan;56(1):272–277. [PMC free article] [PubMed] [Google Scholar]
  20. Osborne L. R., Lynch M., Middleton P. G., Alton E. W., Geddes D. M., Pryor J. P., Hodson M. E., Santis G. K. Nasal epithelial ion transport and genetic analysis of infertile men with congenital bilateral absence of the vas deferens. Hum Mol Genet. 1993 Oct;2(10):1605–1609. doi: 10.1093/hmg/2.10.1605. [DOI] [PubMed] [Google Scholar]
  21. Osborne L., Knight R., Santis G., Hodson M. A mutation in the second nucleotide binding fold of the cystic fibrosis gene. Am J Hum Genet. 1991 Mar;48(3):608–612. [PMC free article] [PubMed] [Google Scholar]
  22. Patrizio P., Asch R. H., Handelin B., Silber S. J. Aetiology of congenital absence of vas deferens: genetic study of three generations. Hum Reprod. 1993 Feb;8(2):215–220. doi: 10.1093/oxfordjournals.humrep.a138025. [DOI] [PubMed] [Google Scholar]
  23. Pignatti P. F., Bombieri C., Benetazzo M., Casartelli A., Trabetti E., Gilè L. S., Martinati L. C., Boner A. L., Luisetti M. CFTR gene variant IVS8-5T in disseminated bronchiectasis. Am J Hum Genet. 1996 Apr;58(4):889–892. [PMC free article] [PubMed] [Google Scholar]
  24. Rave-Harel N., Madgar I., Goshen R., Nissim-Rafinia M., Ziadni A., Rahat A., Chiba O., Kalman Y. M., Brautbar C., Levinson D. CFTR haplotype analysis reveals genetic heterogeneity in the etiology of congenital bilateral aplasia of the vas deferens. Am J Hum Genet. 1995 Jun;56(6):1359–1366. [PMC free article] [PubMed] [Google Scholar]
  25. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  26. Rommens J. M., Iannuzzi M. C., Kerem B., Drumm M. L., Melmer G., Dean M., Rozmahel R., Cole J. L., Kennedy D., Hidaka N. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989 Sep 8;245(4922):1059–1065. doi: 10.1126/science.2772657. [DOI] [PubMed] [Google Scholar]
  27. Schellen T. M., van Straaten A. Autosomal recessive hereditary congenital aplasia of the vasa deferentia in four siblings. Fertil Steril. 1980 Oct;34(4):401–404. doi: 10.1016/s0015-0282(16)45030-2. [DOI] [PubMed] [Google Scholar]
  28. Smith C. W., Patton J. G., Nadal-Ginard B. Alternative splicing in the control of gene expression. Annu Rev Genet. 1989;23:527–577. doi: 10.1146/annurev.ge.23.120189.002523. [DOI] [PubMed] [Google Scholar]
  29. Tizzano E. F., Silver M. M., Chitayat D., Benichou J. C., Buchwald M. Differential cellular expression of cystic fibrosis transmembrane regulator in human reproductive tissues. Clues for the infertility in patients with cystic fibrosis. Am J Pathol. 1994 May;144(5):906–914. [PMC free article] [PubMed] [Google Scholar]
  30. Trezise A. E., Chambers J. A., Wardle C. J., Gould S., Harris A. Expression of the cystic fibrosis gene in human foetal tissues. Hum Mol Genet. 1993 Mar;2(3):213–218. doi: 10.1093/hmg/2.3.213. [DOI] [PubMed] [Google Scholar]
  31. Vidaud M., Fanen P., Martin J., Ghanem N., Nicolas S., Goossens M. Three point mutations in the CFTR gene in French cystic fibrosis patients: identification by denaturing gradient gel electrophoresis. Hum Genet. 1990 Sep;85(4):446–449. doi: 10.1007/BF02428305. [DOI] [PubMed] [Google Scholar]
  32. Zielenski J., Bozon D., Kerem B., Markiewicz D., Durie P., Rommens J. M., Tsui L. C. Identification of mutations in exons 1 through 8 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics. 1991 May;10(1):229–235. doi: 10.1016/0888-7543(91)90504-8. [DOI] [PubMed] [Google Scholar]
  33. Zielenski J., Rozmahel R., Bozon D., Kerem B., Grzelczak Z., Riordan J. R., Rommens J., Tsui L. C. Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics. 1991 May;10(1):214–228. doi: 10.1016/0888-7543(91)90503-7. [DOI] [PubMed] [Google Scholar]