Fanconi anemia mutation causes cellular susceptibility to ambient oxygen (original) (raw)
. 1988 Oct;43(4):429–435.
Abstract
The gene defect causing the Fanconi anemia (FA) phenotype appears to be expressed at the cellular level, since FA fibroblasts show a protracted course of explant outgrowth, a diminished in vitro life span, and very poor cloning. We show that exposure of FA fibroblasts to hypoxic (5% v/v oxygen) culture conditions restores their growth in vitro to near normal. Exposure to elevated oxygen tension (35% v/v) causes accumulations of FA cells in the S and G2/M phases of the cell cycle that are in significant excess of those seen in heterozygote and control strains. In the absence of evidence for defective cytoplasmatic radical scavenging systems, these observations suggest increased nuclear susceptibility to ambient oxygen as cause of the FA cellular phenotype.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachur N. R., Gee M. V., Friedman R. D. Nuclear catalyzed antibiotic free radical formation. Cancer Res. 1982 Mar;42(3):1078–1081. [PubMed] [Google Scholar]
- Balin A. K., Goodman D. B., Rasmussen H., Cristofalo V. J. Oxygen-sensitive stages of the cell cycle of human diploid cells. J Cell Biol. 1978 Aug;78(2):390–400. doi: 10.1083/jcb.78.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berger N. A., Berger S. J., Catino D. M. Abnormal NAD+ levels in cells from patients with Fanconi's anaemia. Nature. 1982 Sep 16;299(5880):271–273. doi: 10.1038/299271a0. [DOI] [PubMed] [Google Scholar]
- Cathcart R., Schwiers E., Saul R. L., Ames B. N. Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5633–5637. doi: 10.1073/pnas.81.18.5633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cerutti P. A. Prooxidant states and tumor promotion. Science. 1985 Jan 25;227(4685):375–381. doi: 10.1126/science.2981433. [DOI] [PubMed] [Google Scholar]
- Chaudhry A. N., Santinga J. T., Gabig T. G. The subcellular particulate NADPH-dependent O2.(-)-generating oxidase from human blood monocytes: comparison to the neutrophil system. Blood. 1982 Oct;60(4):979–983. [PubMed] [Google Scholar]
- Dallapiccola B., Porfirio B., Mokini V., Alimena G., Isacchi G., Gandini E. Effect of oxidants and antioxidants on chromosomal breakage in Fanconi anemia lymphocytes. Hum Genet. 1985;69(1):62–65. doi: 10.1007/BF00295530. [DOI] [PubMed] [Google Scholar]
- Dean S. W., Fox M. Investigation of the cell cycle response of normal and Fanconi's anaemia fibroblasts to nitrogen mustard using flow cytometry. J Cell Sci. 1983 Nov;64:265–279. doi: 10.1242/jcs.64.1.265. [DOI] [PubMed] [Google Scholar]
- Dutrillaux B., Aurias A., Dutrillaux A. M., Buriot D., Prieur M. The cell cycle of lymphocytes in Fanconi anemia. Hum Genet. 1982;62(4):327–332. doi: 10.1007/BF00304549. [DOI] [PubMed] [Google Scholar]
- Elmore E., Swift M. Growth of cultured cells from patients with Fanconi anemia. J Cell Physiol. 1975 Dec;87(2):229–233. doi: 10.1002/jcp.1040870211. [DOI] [PubMed] [Google Scholar]
- Gille J. J., Wortelboer H. M., Joenje H. Antioxidant status of Fanconi anemia fibroblasts. Hum Genet. 1987 Sep;77(1):28–31. doi: 10.1007/BF00284708. [DOI] [PubMed] [Google Scholar]
- Hirsch-Kauffmann M., Schweiger M., Wagner E. F., Sperling K. Deficiency of DNA ligase activity in Fanconi's anemia. Hum Genet. 1978 Nov 24;45(1):25–32. doi: 10.1007/BF00277570. [DOI] [PubMed] [Google Scholar]
- Joenje H., Arwert F., Eriksson A. W., de Koning H., Oostra A. B. Oxygen-dependence of chromosomal aberrations in Fanconi's anaemia. Nature. 1981 Mar 12;290(5802):142–143. doi: 10.1038/290142a0. [DOI] [PubMed] [Google Scholar]
- Kubbies M., Schindler D., Hoehn H., Schinzel A., Rabinovitch P. S. Endogenous blockage and delay of the chromosome cycle despite normal recruitment and growth phase explain poor proliferation and frequent edomitosis in Fanconi anemia cells. Am J Hum Genet. 1985 Sep;37(5):1022–1030. [PMC free article] [PubMed] [Google Scholar]
- Latt S. A., Stetten G., Juergens L. A., Buchanan G. R., Gerald P. S. Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi's anemia. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4066–4070. doi: 10.1073/pnas.72.10.4066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagasawa H., Little J. B. Suppression of cytotoxic effect of mitomycin-C by superoxide dismutase in Fanconi's anemia and dyskeratosis congenita fibroblasts. Carcinogenesis. 1983;4(7):795–799. doi: 10.1093/carcin/4.7.795. [DOI] [PubMed] [Google Scholar]
- Nordenson I. Effect of superoxide dismutase and catalase on spontaneously occurring chromosome breaks in patients with Fanconi's anemia. Hereditas. 1977;86(2):147–150. doi: 10.1111/j.1601-5223.1977.tb01223.x. [DOI] [PubMed] [Google Scholar]
- Packer L., Fuehr K. Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature. 1977 Jun 2;267(5610):423–425. doi: 10.1038/267423a0. [DOI] [PubMed] [Google Scholar]
- Poot M., Verkerk A., Koster J. F., Jongkind J. F. De novo synthesis of glutathione in human fibroblasts during in vitro ageing and in some metabolic diseases as measured by a flow cytometric method. Biochim Biophys Acta. 1986 Oct 1;883(3):580–584. doi: 10.1016/0304-4165(86)90300-4. [DOI] [PubMed] [Google Scholar]
- Rabinovitch P. S. Regulation of human fibroblast growth rate by both noncycling cell fraction transition probability is shown by growth in 5-bromodeoxyuridine followed by Hoechst 33258 flow cytometry. Proc Natl Acad Sci U S A. 1983 May;80(10):2951–2955. doi: 10.1073/pnas.80.10.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raj A. S., Heddle J. A. The effect of superoxide dismutase, catalase and L-cysteine on spontaneous and on mitomycin C induced chromosomal breakage in Fanconi's anemia and normal fibroblasts as measured by the micronucleus method. Mutat Res. 1980 May;78(1):59–66. doi: 10.1016/0165-1218(80)90026-9. [DOI] [PubMed] [Google Scholar]
- Remsen J. F., Cerutti P. A. Deficiency of gamma-ray excision repair in skin fibroblasts from patients with Fanconi's anemia. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2419–2423. doi: 10.1073/pnas.73.7.2419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sasaki M. S. Is Fanconi's anaemia defective in a process essential to the repair of DNA cross links? Nature. 1975 Oct 9;257(5526):501–503. doi: 10.1038/257501a0. [DOI] [PubMed] [Google Scholar]
- Sasaki M. S., Tonomura A. A high susceptibility of Fanconi's anemia to chromosome breakage by DNA cross-linking agents. Cancer Res. 1973 Aug;33(8):1829–1836. [PubMed] [Google Scholar]
- Taylor W. G., Camalier R. F., Sanford K. K. Density-dependent effects of oxygen on the growth of mammalian fibroblasts in culture. J Cell Physiol. 1978 Apr;95(1):33–40. doi: 10.1002/jcp.1040950105. [DOI] [PubMed] [Google Scholar]
- Taylor W. G., Richter A., Evans V. J., Sanford K. K. Influence of oxygen and pH on plating efficiency and colony development of WI-38 and Vero cells. Exp Cell Res. 1974 May;86(1):152–156. doi: 10.1016/0014-4827(74)90660-0. [DOI] [PubMed] [Google Scholar]
- Weksberg R., Buchwald M., Sargent P., Thompson M. W., Siminovitch L. Specific cellular defects in patients with Fanconi anemia. J Cell Physiol. 1979 Nov;101(2):311–323. doi: 10.1002/jcp.1041010211. [DOI] [PubMed] [Google Scholar]