Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype (original) (raw)

Abstract

Autosomal recessive spinal muscular atrophy (SMA) is classified, on the basis of age at onset and severity, into three types: type I, severe; type II, intermediate; and type III, mild. The critical region in 5q13 contains an inverted repeat harboring several genes, including the survival motor neuron (SMN) gene, the neuronal apoptosis inhibitory protein (NAIP) gene, and the p44 gene, which encodes a transcription-factor subunit. Deletion of NAIP and p44 is observed more often in severe SMA, but there is no evidence that these genes play a role in the pathology of the disease. In > 90% of all SMA patients, exons 7 and 8 of the telomeric SMN gene (SMNtel) are not detectable, and this is also observed in some normal siblings and parents. Point mutations and gene conversions in SMNtel suggest that it plays a major role in the disease. To define a correlation between genotype and phenotype, we mapped deletions, using pulsed-field gel electrophoresis. Surprisingly, our data show that mutations in SMA types II and III, previously classed as deletions, are in fact due to gene-conversion events in which SMNtel is replaced by its centromeric counterpart, SMNcen. This results in a greater number of SMNcen copies in type II and type III patients compared with type I patients and enables a genotype/phenotype correlation to be made. We also demonstrate individual DNA-content variations of several hundred kilobases, even in a relatively isolated population from Finland. This explains why no consensus map of this region has been produced. This DNA variation may be due to a midisatellite repeat array, which would promote the observed high deletion and gene-conversion rate.

40

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brahe C., Clermont O., Zappata S., Tiziano F., Melki J., Neri G. Frameshift mutation in the survival motor neuron gene in a severe case of SMA type I. Hum Mol Genet. 1996 Dec;5(12):1971–1976. doi: 10.1093/hmg/5.12.1971. [DOI] [PubMed] [Google Scholar]
  2. Brzustowicz L. M., Lehner T., Castilla L. H., Penchaszadeh G. K., Wilhelmsen K. C., Daniels R., Davies K. E., Leppert M., Ziter F., Wood D. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3. Nature. 1990 Apr 5;344(6266):540–541. doi: 10.1038/344540a0. [DOI] [PubMed] [Google Scholar]
  3. Burlet P., Bürglen L., Clermont O., Lefebvre S., Viollet L., Munnich A., Melki J. Large scale deletions of the 5q13 region are specific to Werdnig-Hoffmann disease. J Med Genet. 1996 Apr;33(4):281–283. doi: 10.1136/jmg.33.4.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bussaglia E., Clermont O., Tizzano E., Lefebvre S., Bürglen L., Cruaud C., Urtizberea J. A., Colomer J., Munnich A., Baiget M. A frame-shift deletion in the survival motor neuron gene in Spanish spinal muscular atrophy patients. Nat Genet. 1995 Nov;11(3):335–337. doi: 10.1038/ng1195-335. [DOI] [PubMed] [Google Scholar]
  5. Bürglen L., Seroz T., Miniou P., Lefebvre S., Burlet P., Munnich A., Pequignot E. V., Egly J. M., Melki J. The gene encoding p44, a subunit of the transcription factor TFIIH, is involved in large-scale deletions associated with Werdnig-Hoffmann disease. Am J Hum Genet. 1997 Jan;60(1):72–79. [PMC free article] [PubMed] [Google Scholar]
  6. Carpten J. D., DiDonato C. J., Ingraham S. E., Wagner-McPherson C., Nieuwenhuijsen B. W., Wasmuth J. J., Burghes A. H. A YAC contig of the region containing the spinal muscular atrophy gene (SMA): identification of an unstable region. Genomics. 1994 Nov 15;24(2):351–356. doi: 10.1006/geno.1994.1626. [DOI] [PubMed] [Google Scholar]
  7. Cobben J. M., van der Steege G., Grootscholten P., de Visser M., Scheffer H., Buys C. H. Deletions of the survival motor neuron gene in unaffected siblings of patients with spinal muscular atrophy. Am J Hum Genet. 1995 Oct;57(4):805–808. [PMC free article] [PubMed] [Google Scholar]
  8. Collier S., Sinnott P. J., Dyer P. A., Price D. A., Harris R., Strachan T. Pulsed field gel electrophoresis identifies a high degree of variability in the number of tandem 21-hydroxylase and complement C4 gene repeats in 21-hydroxylase deficiency haplotypes. EMBO J. 1989 May;8(5):1393–1402. doi: 10.1002/j.1460-2075.1989.tb03520.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Devriendt K., Lammens M., Schollen E., Van Hole C., Dom R., Devlieger H., Cassiman J. J., Fryns J. P., Matthijs G. Clinical and molecular genetic features of congenital spinal muscular atrophy. Ann Neurol. 1996 Nov;40(5):731–738. doi: 10.1002/ana.410400509. [DOI] [PubMed] [Google Scholar]
  10. DiDonato C. J., Ingraham S. E., Mendell J. R., Prior T. W., Lenard S., Moxley R. T., 3rd, Florence J., Burghes A. H. Deletion and conversion in spinal muscular atrophy patients: is there a relationship to severity? Ann Neurol. 1997 Feb;41(2):230–237. doi: 10.1002/ana.410410214. [DOI] [PubMed] [Google Scholar]
  11. DiDonato C. J., Morgan K., Carpten J. D., Fuerst P., Ingraham S. E., Prescott G., McPherson J. D., Wirth B., Zerres K., Hurko O. Association between Ag1-CA alleles and severity of autosomal recessive proximal spinal muscular atrophy. Am J Hum Genet. 1994 Dec;55(6):1218–1229. [PMC free article] [PubMed] [Google Scholar]
  12. Emery A. E. Clinical and genetic heterogeneity in spinal muscular atrophy--the multiple allele model. Neuromuscul Disord. 1991;1(4):307–308. doi: 10.1016/0960-8966(91)90106-3. [DOI] [PubMed] [Google Scholar]
  13. Francis M. J., Morrison K. E., Campbell L., Grewal P. K., Christodoulou Z., Daniels R. J., Monaco A. P., Frischauf A. M., McPherson J., Wasmuth J. A contig of non-chimaeric YACs containing the spinal muscular atrophy gene in 5q13. Hum Mol Genet. 1993 Aug;2(8):1161–1167. doi: 10.1093/hmg/2.8.1161. [DOI] [PubMed] [Google Scholar]
  14. Francis M. J., Nesbit M. A., Theodosiou A. M., Rodrigues N. R., Campbell L., Christodoulou Z., Qureshi S. J., Porteous D. J., Brookes A. J., Davies K. E. Mapping of retrotransposon sequences in the unstable region surrounding the spinal muscular atrophy locus in 5q13. Genomics. 1995 May 20;27(2):366–369. doi: 10.1006/geno.1995.1059. [DOI] [PubMed] [Google Scholar]
  15. Gilliam T. C., Brzustowicz L. M., Castilla L. H., Lehner T., Penchaszadeh G. K., Daniels R. J., Byth B. C., Knowles J., Hislop J. E., Shapira Y. Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature. 1990 Jun 28;345(6278):823–825. doi: 10.1038/345823a0. [DOI] [PubMed] [Google Scholar]
  16. Hahnen E., Forkert R., Marke C., Rudnik-Schöneborn S., Schönling J., Zerres K., Wirth B. Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy: evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum Mol Genet. 1995 Oct;4(10):1927–1933. doi: 10.1093/hmg/4.10.1927. [DOI] [PubMed] [Google Scholar]
  17. Hahnen E., Schönling J., Rudnik-Schöneborn S., Zerres K., Wirth B. Hybrid survival motor neuron genes in patients with autosomal recessive spinal muscular atrophy: new insights into molecular mechanisms responsible for the disease. Am J Hum Genet. 1996 Nov;59(5):1057–1065. [PMC free article] [PubMed] [Google Scholar]
  18. Humbert S., van Vuuren H., Lutz Y., Hoeijmakers J. H., Egly J. M., Moncollin V. p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair. EMBO J. 1994 May 15;13(10):2393–2398. doi: 10.1002/j.1460-2075.1994.tb06523.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kleyn P. W., Wang C. H., Lien L. L., Vitale E., Pan J., Ross B. M., Grunn A., Palmer D. A., Warburton D., Brzustowicz L. M. Construction of a yeast artificial chromosome contig spanning the spinal muscular atrophy disease gene region. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6801–6805. doi: 10.1073/pnas.90.14.6801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lefebvre S., Bürglen L., Reboullet S., Clermont O., Burlet P., Viollet L., Benichou B., Cruaud C., Millasseau P., Zeviani M. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995 Jan 13;80(1):155–165. doi: 10.1016/0092-8674(95)90460-3. [DOI] [PubMed] [Google Scholar]
  21. Leisti J., Jouppila P., Mustonen A., Kähkönen M., Herva R., Ruokonen A., Kirkinen P. Prenatal diagnosis of single gene disorders in northern Finland. Ann Med. 1990 Apr;22(2):123–129. doi: 10.3109/07853899009147254. [DOI] [PubMed] [Google Scholar]
  22. Liu Q., Dreyfuss G. A novel nuclear structure containing the survival of motor neurons protein. EMBO J. 1996 Jul 15;15(14):3555–3565. [PMC free article] [PubMed] [Google Scholar]
  23. Matthijs G., Schollen E., Legius E., Devriendt K., Goemans N., Kayserili H., Apäk M. Y., Cassiman J. J. Unusual molecular findings in autosomal recessive spinal muscular atrophy. J Med Genet. 1996 Jun;33(6):469–474. doi: 10.1136/jmg.33.6.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Melki J., Abdelhak S., Sheth P., Bachelot M. F., Burlet P., Marcadet A., Aicardi J., Barois A., Carriere J. P., Fardeau M. Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q. Nature. 1990 Apr 19;344(6268):767–768. doi: 10.1038/344767a0. [DOI] [PubMed] [Google Scholar]
  25. Melki J., Lefebvre S., Burglen L., Burlet P., Clermont O., Millasseau P., Reboullet S., Bénichou B., Zeviani M., Le Paslier D. De novo and inherited deletions of the 5q13 region in spinal muscular atrophies. Science. 1994 Jun 3;264(5164):1474–1477. doi: 10.1126/science.7910982. [DOI] [PubMed] [Google Scholar]
  26. Melki J., Sheth P., Abdelhak S., Burlet P., Bachelot M. F., Lathrop M. G., Frezal J., Munnich A. Mapping of acute (type I) spinal muscular atrophy to chromosome 5q12-q14. The French Spinal Muscular Atrophy Investigators. Lancet. 1990 Aug 4;336(8710):271–273. doi: 10.1016/0140-6736(90)91803-i. [DOI] [PubMed] [Google Scholar]
  27. Munsat T. L., Davies K. E. International SMA consortium meeting. (26-28 June 1992, Bonn, Germany). Neuromuscul Disord. 1992;2(5-6):423–428. doi: 10.1016/s0960-8966(06)80015-5. [DOI] [PubMed] [Google Scholar]
  28. Nakamura Y., Julier C., Wolff R., Holm T., O'Connell P., Leppert M., White R. Characterization of a human 'midisatellite' sequence. Nucleic Acids Res. 1987 Mar 25;15(6):2537–2547. doi: 10.1093/nar/15.6.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Parsons D. W., McAndrew P. E., Monani U. R., Mendell J. R., Burghes A. H., Prior T. W. An 11 base pair duplication in exon 6 of the SMN gene produces a type I spinal muscular atrophy (SMA) phenotype: further evidence for SMN as the primary SMA-determining gene. Hum Mol Genet. 1996 Nov;5(11):1727–1732. doi: 10.1093/hmg/5.11.1727. [DOI] [PubMed] [Google Scholar]
  30. Rodrigues N. R., Owen N., Talbot K., Ignatius J., Dubowitz V., Davies K. E. Deletions in the survival motor neuron gene on 5q13 in autosomal recessive spinal muscular atrophy. Hum Mol Genet. 1995 Apr;4(4):631–634. doi: 10.1093/hmg/4.4.631. [DOI] [PubMed] [Google Scholar]
  31. Rodrigues N. R., Owen N., Talbot K., Patel S., Muntoni F., Ignatius J., Dubowitz V., Davies K. E. Gene deletions in spinal muscular atrophy. J Med Genet. 1996 Feb;33(2):93–96. doi: 10.1136/jmg.33.2.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Roy N., Mahadevan M. S., McLean M., Shutler G., Yaraghi Z., Farahani R., Baird S., Besner-Johnston A., Lefebvre C., Kang X. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell. 1995 Jan 13;80(1):167–178. doi: 10.1016/0092-8674(95)90461-1. [DOI] [PubMed] [Google Scholar]
  33. Roy N., McLean M. D., Besner-Johnston A., Lefebvre C., Salih M., Carpten J. D., Burghes A. H., Yaraghi Z., Ikeda J. E., Korneluk R. G. Refined physical map of the spinal muscular atrophy gene (SMA) region at 5q13 based on YAC and cosmid contiguous arrays. Genomics. 1995 Apr 10;26(3):451–460. doi: 10.1016/0888-7543(95)80162-f. [DOI] [PubMed] [Google Scholar]
  34. Sargent C. A., Chalmers I. J., Leversha M., Affara N. A. A rearrangement on chromosome 5 of an expressed human beta-glucuronidase pseudogene. Mamm Genome. 1994 Dec;5(12):791–796. doi: 10.1007/BF00292015. [DOI] [PubMed] [Google Scholar]
  35. Schwartz M., Sørensen N., Hansen F. J., Hertz J. M., Nørby S., Tranebjaerg L., Skovby F. Quantification, by solid-phase minisequencing, of the telomeric and centromeric copies of the survival motor neuron gene in families with spinal muscular atrophy. Hum Mol Genet. 1997 Jan;6(1):99–104. doi: 10.1093/hmg/6.1.99. [DOI] [PubMed] [Google Scholar]
  36. Selig S., Bruno S., Scharf J. M., Wang C. H., Vitale E., Gilliam T. C., Kunkel L. M. Expressed cadherin pseudogenes are localized to the critical region of the spinal muscular atrophy gene. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3702–3706. doi: 10.1073/pnas.92.9.3702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Talbot K., Ponting C. P., Theodosiou A. M., Rodrigues N. R., Surtees R., Mountford R., Davies K. E. Missense mutation clustering in the survival motor neuron gene: a role for a conserved tyrosine and glycine rich region of the protein in RNA metabolism? Hum Mol Genet. 1997 Mar;6(3):497–500. doi: 10.1093/hmg/6.3.497. [DOI] [PubMed] [Google Scholar]
  38. Talbot K., Rodrigues N., Bernert G., Bittner R., Davies K. Evidence for compound heterozygosity causing mild and severe forms of autosomal recessive spinal muscular atrophy. J Med Genet. 1996 Dec;33(12):1019–1021. doi: 10.1136/jmg.33.12.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Theodosiou A. M., Morrison K. E., Nesbit A. M., Daniels R. J., Campbell L., Francis M. J., Christodoulou Z., Davies K. E. Complex repetitive arrangements of gene sequence in the candidate region of the spinal muscular atrophy gene in 5q13. Am J Hum Genet. 1994 Dec;55(6):1209–1217. [PMC free article] [PubMed] [Google Scholar]
  40. Velasco E., Valero C., Valero A., Moreno F., Hernández-Chico C. Molecular analysis of the SMN and NAIP genes in Spanish spinal muscular atrophy (SMA) families and correlation between number of copies of cBCD541 and SMA phenotype. Hum Mol Genet. 1996 Feb;5(2):257–263. doi: 10.1093/hmg/5.2.257. [DOI] [PubMed] [Google Scholar]
  41. Wang C. H., Xu J., Carter T. A., Ross B. M., Dominski M. K., Bellcross C. A., Penchaszadeh G. K., Munsat T. L., Gilliam T. C. Characterization of survival motor neuron (SMNT) gene deletions in asymptomatic carriers of spinal muscular atrophy. Hum Mol Genet. 1996 Mar;5(3):359–365. doi: 10.1093/hmg/5.3.359. [DOI] [PubMed] [Google Scholar]
  42. Wirth B., Hahnen E., Morgan K., DiDonato C. J., Dadze A., Rudnik-Schöneborn S., Simard L. R., Zerres K., Burghes A. H. Allelic association and deletions in autosomal recessive proximal spinal muscular atrophy: association of marker genotype with disease severity and candidate cDNAs. Hum Mol Genet. 1995 Aug;4(8):1273–1284. doi: 10.1093/hmg/4.8.1273. [DOI] [PubMed] [Google Scholar]
  43. de la Chapelle A. Disease gene mapping in isolated human populations: the example of Finland. J Med Genet. 1993 Oct;30(10):857–865. doi: 10.1136/jmg.30.10.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. van der Steege G., Grootscholten P. M., Cobben J. M., Zappata S., Scheffer H., den Dunnen J. T., van Ommen G. J., Brahe C., Buys C. H. Apparent gene conversions involving the SMN gene in the region of the spinal muscular atrophy locus on chromosome 5. Am J Hum Genet. 1996 Oct;59(4):834–838. [PMC free article] [PubMed] [Google Scholar]
  45. van der Steege G., Grootscholten P. M., van der Vlies P., Draaijers T. G., Osinga J., Cobben J. M., Scheffer H., Buys C. H. PCR-based DNA test to confirm clinical diagnosis of autosomal recessive spinal muscular atrophy. Lancet. 1995 Apr 15;345(8955):985–986. [PubMed] [Google Scholar]