Evidence for at least eight Fanconi anemia genes (original) (raw)

Abstract

Fanconi anemia (FA) is an autosomal recessive chromosomal breakage disorder with diverse clinical symptoms including progressive bone marrow failure and increased cancer risk. FA cells are hypersensitive to crosslinking agents, which has been exploited to assess genetic heterogeneity through complementation analysis. Five complementation groups (FA-A through FA-E) have so far been distinguished among the first 20 FA patients analyzed. Complementation groups in FA are likely to represent distinct disease genes, two of which (FAC and FAA) have been cloned. Following the identification of the first FA-E patient, additional patients were identified whose cell lines complemented groups A-D. To assess their possible assignment to the E group, we introduced selection markers into the original FA-E cell line and analyzed fusion hybrids with three cell lines classified as non-ABCD. All hybrids were complemented for cross-linker sensitivity, indicating nonidentity with group E. We then marked the three non-ABCDE cell lines and examined all possible hybrid combinations for complementation, which indicated that each individual cell line represented a separate complementation group. These results thus define three new groups, FA-F, FA-G, and FA-H, providing evidence for a minimum of eight distinct FA genes.

940

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchwald M. Complementation groups: one or more per gene? Nat Genet. 1995 Nov;11(3):228–230. doi: 10.1038/ng1195-228. [DOI] [PubMed] [Google Scholar]
  2. Cumming R. C., Liu J. M., Youssoufian H., Buchwald M. Suppression of apoptosis in hematopoietic factor-dependent progenitor cell lines by expression of the FAC gene. Blood. 1996 Dec 15;88(12):4558–4567. [PubMed] [Google Scholar]
  3. D'Andrea A. D. Fanconi anaemia forges a novel pathway. Nat Genet. 1996 Nov;14(3):240–242. doi: 10.1038/ng1196-240. [DOI] [PubMed] [Google Scholar]
  4. Duckworth-Rysiecki G., Cornish K., Clarke C. A., Buchwald M. Identification of two complementation groups in Fanconi anemia. Somat Cell Mol Genet. 1985 Jan;11(1):35–41. doi: 10.1007/BF01534732. [DOI] [PubMed] [Google Scholar]
  5. Hoeijmakers J. H., Bootsma D. DNA repair. Incisions for excision. Nature. 1994 Oct 20;371(6499):654–655. doi: 10.1038/371654a0. [DOI] [PubMed] [Google Scholar]
  6. Ishida R., Buchwald M. Susceptibility of Fanconi's anemia lymphoblasts to DNA-cross-linking and alkylating agents. Cancer Res. 1982 Oct;42(10):4000–4006. [PubMed] [Google Scholar]
  7. Joenje H. Fanconi anaemia complementation groups in Germany and The Netherlands. European Fanconi Anaemia Research group. Hum Genet. 1996 Mar;97(3):280–282. doi: 10.1007/BF02185753. [DOI] [PubMed] [Google Scholar]
  8. Joenje H., Lo ten Foe J. R., Oostra A. B., van Berkel C. G., Rooimans M. A., Schroeder-Kurth T., Wegner R. D., Gille J. J., Buchwald M., Arwert F. Classification of Fanconi anemia patients by complementation analysis: evidence for a fifth genetic subtype. Blood. 1995 Sep 15;86(6):2156–2160. [PubMed] [Google Scholar]
  9. Kruyt F. A., Dijkmans L. M., van den Berg T. K., Joenje H. Fanconi anemia genes act to suppress a cross-linker-inducible p53-independent apoptosis pathway in lymphoblastoid cell lines. Blood. 1996 Feb 1;87(3):938–948. [PubMed] [Google Scholar]
  10. Liu J. M., Buchwald M., Walsh C. E., Young N. S. Fanconi anemia and novel strategies for therapy. Blood. 1994 Dec 15;84(12):3995–4007. [PubMed] [Google Scholar]
  11. Lo Ten Foe J. R., Rooimans M. A., Bosnoyan-Collins L., Alon N., Wijker M., Parker L., Lightfoot J., Carreau M., Callen D. F., Savoia A. Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nat Genet. 1996 Nov;14(3):320–323. doi: 10.1038/ng1196-320. [DOI] [PubMed] [Google Scholar]
  12. Pronk J. C., Gibson R. A., Savoia A., Wijker M., Morgan N. V., Melchionda S., Ford D., Temtamy S., Ortega J. J., Jansen S. Localisation of the Fanconi anaemia complementation group A gene to chromosome 16q24.3. Nat Genet. 1995 Nov;11(3):338–340. doi: 10.1038/ng1195-338. [DOI] [PubMed] [Google Scholar]
  13. Savoia A., Zatterale A., Del Principe D., Joenje H. Fanconi anaemia in Italy: high prevalence of complementation group A in two geographic clusters. Hum Genet. 1996 May;97(5):599–603. doi: 10.1007/BF02281868. [DOI] [PubMed] [Google Scholar]
  14. Strathdee C. A., Duncan A. M., Buchwald M. Evidence for at least four Fanconi anaemia genes including FACC on chromosome 9. Nat Genet. 1992 Jun;1(3):196–198. doi: 10.1038/ng0692-196. [DOI] [PubMed] [Google Scholar]
  15. Strathdee C. A., Gavish H., Shannon W. R., Buchwald M. Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature. 1992 Apr 30;356(6372):763–767. doi: 10.1038/356763a0. [DOI] [PubMed] [Google Scholar]
  16. Verlander P. C., Lin J. D., Udono M. U., Zhang Q., Gibson R. A., Mathew C. G., Auerbach A. D. Mutation analysis of the Fanconi anemia gene FACC. Am J Hum Genet. 1994 Apr;54(4):595–601. [PMC free article] [PubMed] [Google Scholar]
  17. Whitney M. A., Royle G., Low M. J., Kelly M. A., Axthelm M. K., Reifsteck C., Olson S., Braun R. E., Heinrich M. C., Rathbun R. K. Germ cell defects and hematopoietic hypersensitivity to gamma-interferon in mice with a targeted disruption of the Fanconi anemia C gene. Blood. 1996 Jul 1;88(1):49–58. [PubMed] [Google Scholar]
  18. Whitney M. A., Saito H., Jakobs P. M., Gibson R. A., Moses R. E., Grompe M. A common mutation in the FACC gene causes Fanconi anaemia in Ashkenazi Jews. Nat Genet. 1993 Jun;4(2):202–205. doi: 10.1038/ng0693-202. [DOI] [PubMed] [Google Scholar]
  19. Whitney M., Thayer M., Reifsteck C., Olson S., Smith L., Jakobs P. M., Leach R., Naylor S., Joenje H., Grompe M. Microcell mediated chromosome transfer maps the Fanconi anaemia group D gene to chromosome 3p. Nat Genet. 1995 Nov;11(3):341–343. doi: 10.1038/ng1195-341. [DOI] [PubMed] [Google Scholar]