Evidence for interaction between the TCO and NMTC1 loci in familial non-medullary thyroid cancer (original) (raw)

Abstract

Background: Familial non-medullary thyroid cancer (fNMTC) is a complex genetic disorder that is more aggressive than its sporadic counterpart. Thus far, three genetic loci have been implicated in susceptibility to fNMTC by linkage analysis.

Methods: We used linkage analysis to test the significance of two of the known susceptibility loci for fNMTC, TCO on 19p13 and NMTC1 on 2q21 in 10 fNMTC families, nine of which present with cell oxyphilia, a rare histological phenotype associated with TCO. Furthermore, we used two-locus linkage analysis to examine the possibility that the TCO and NMTC1 loci interact to increase the risk of NMTC.

Results: The 10 families provided evidence for linkage at both TCO and NMTC, with LOD scores of 1.56 and 2.85, respectively. Two-locus linkage analysis, using a multiplicative risk model for the development of NMTC, achieved a maximum LOD of 3.92, with an LOD of 4.51 when assuming 70% of families were linked, indicating that the segregation in these families is consistent with an interaction model. Most of this evidence came from a large Tyrolean family that singularly achieved a two-locus LOD of 3.21.

Conclusions: These results provide further evidence that susceptibility genes for fNMTC exist at 19p13 and 2q21, and furthermore, raise the possibility that in a subset of fNMTC pedigrees, these loci interact resulting in significantly increased risk of NMTC for patients that carry both susceptibility loci.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alsanea O., Clark O. H. Familial thyroid cancer. Curr Opin Oncol. 2001 Jan;13(1):44–51. doi: 10.1097/00001622-200101000-00009. [DOI] [PubMed] [Google Scholar]
  2. Bell B., Mazzaferri E. L. Familial adenomatous polyposis (Gardner's syndrome) and thyroid carcinoma. A case report and review of the literature. Dig Dis Sci. 1993 Jan;38(1):185–190. doi: 10.1007/BF01296795. [DOI] [PubMed] [Google Scholar]
  3. Bevan S., Pal T., Greenberg C. R., Green H., Wixey J., Bignell G., Narod S. A., Foulkes W. D., Stratton M. R., Houlston R. S. A comprehensive analysis of MNG1, TCO1, fPTC, PTEN, TSHR, and TRKA in familial nonmedullary thyroid cancer: confirmation of linkage to TCO1. J Clin Endocrinol Metab. 2001 Aug;86(8):3701–3704. doi: 10.1210/jcem.86.8.7725. [DOI] [PubMed] [Google Scholar]
  4. Bignell G. R., Canzian F., Shayeghi M., Stark M., Shugart Y. Y., Biggs P., Mangion J., Hamoudi R., Rosenblatt J., Buu P. Familial nontoxic multinodular thyroid goiter locus maps to chromosome 14q but does not account for familial nonmedullary thyroid cancer. Am J Hum Genet. 1997 Nov;61(5):1123–1130. doi: 10.1086/301610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broman K. W., Murray J. C., Sheffield V. C., White R. L., Weber J. L. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet. 1998 Sep;63(3):861–869. doi: 10.1086/302011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burgess J. R., Duffield A., Wilkinson S. J., Ware R., Greenaway T. M., Percival J., Hoffman L. Two families with an autosomal dominant inheritance pattern for papillary carcinoma of the thyroid. J Clin Endocrinol Metab. 1997 Feb;82(2):345–348. doi: 10.1210/jcem.82.2.3789. [DOI] [PubMed] [Google Scholar]
  7. Canzian F., Amati P., Harach H. R., Kraimps J. L., Lesueur F., Barbier J., Levillain P., Romeo G., Bonneau D. A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am J Hum Genet. 1998 Dec;63(6):1743–1748. doi: 10.1086/302164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cetta F., Curia M. C., Montalto G., Gori M., Cama A., Battista P., Barbarisi A. Thyroid carcinoma usually occurs in patients with familial adenomatous polyposis in the absence of biallelic inactivation of the adenomatous polyposis coli gene. J Clin Endocrinol Metab. 2001 Jan;86(1):427–432. doi: 10.1210/jcem.86.1.7095. [DOI] [PubMed] [Google Scholar]
  9. Collins A., Frezal J., Teague J., Morton N. E. A metric map of humans: 23,500 loci in 850 bands. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14771–14775. doi: 10.1073/pnas.93.25.14771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cui J., Staples M. P., Hopper J. L., English D. R., McCredie M. R., Giles G. G. Segregation analyses of 1,476 population-based Australian families affected by prostate cancer. Am J Hum Genet. 2001 Apr 11;68(5):1207–1218. doi: 10.1086/320114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gardner E. J., Rogers S. W., Woodward S. Numerical and structural chromosome aberrations in cultured lymphocytes and cutaneous fibroblasts of patients with multiple adenomas of the colorectum. Cancer. 1982 Apr 1;49(7):1413–1419. doi: 10.1002/1097-0142(19820401)49:7<1413::aid-cncr2820490718>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  12. Goldgar D. E., Easton D. F., Cannon-Albright L. A., Skolnick M. H. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994 Nov 2;86(21):1600–1608. doi: 10.1093/jnci/86.21.1600. [DOI] [PubMed] [Google Scholar]
  13. Grossman R. F., Tu S. H., Duh Q. Y., Siperstein A. E., Novosolov F., Clark O. H. Familial nonmedullary thyroid cancer. An emerging entity that warrants aggressive treatment. Arch Surg. 1995 Aug;130(8):892–899. doi: 10.1001/archsurg.1995.01430080094015. [DOI] [PubMed] [Google Scholar]
  14. Hemminki K., Dong C. Familial relationships in thyroid cancer by histo-pathological type. Int J Cancer. 2000 Jan 15;85(2):201–205. [PubMed] [Google Scholar]
  15. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M., FitzHugh W. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. doi: 10.1038/35057062. [DOI] [PubMed] [Google Scholar]
  16. Lesueur F., Corbex M., McKay J. D., Lima J., Soares P., Griseri P., Burgess J., Ceccherini I., Landolfi S., Papotti M. Specific haplotypes of the RET proto-oncogene are over-represented in patients with sporadic papillary thyroid carcinoma. J Med Genet. 2002 Apr;39(4):260–265. doi: 10.1136/jmg.39.4.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lesueur F., Stark M., Tocco T., Ayadi H., Delisle M. J., Goldgar D. E., Schlumberger M., Romeo G., Canzian F. Genetic heterogeneity in familial nonmedullary thyroid carcinoma: exclusion of linkage to RET, MNG1, and TCO in 56 families. NMTC Consortium. J Clin Endocrinol Metab. 1999 Jun;84(6):2157–2162. doi: 10.1210/jcem.84.6.5798. [DOI] [PubMed] [Google Scholar]
  18. Malchoff C. D., Sarfarazi M., Tendler B., Forouhar F., Whalen G., Joshi V., Arnold A., Malchoff D. M. Papillary thyroid carcinoma associated with papillary renal neoplasia: genetic linkage analysis of a distinct heritable tumor syndrome. J Clin Endocrinol Metab. 2000 May;85(5):1758–1764. doi: 10.1210/jcem.85.5.6557. [DOI] [PubMed] [Google Scholar]
  19. McKay J. D., Lesueur F., Jonard L., Pastore A., Williamson J., Hoffman L., Burgess J., Duffield A., Papotti M., Stark M. Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21. Am J Hum Genet. 2001 Jul 2;69(2):440–446. doi: 10.1086/321979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Musholt T. J., Musholt P. B., Petrich T., Oetting G., Knapp W. H., Klempnauer J. Familial papillary thyroid carcinoma: genetics, criteria for diagnosis, clinical features, and surgical treatment. World J Surg. 2000 Nov;24(11):1409–1417. doi: 10.1007/s002680010233. [DOI] [PubMed] [Google Scholar]
  21. O'Connell J. R., Weeks D. E. The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nat Genet. 1995 Dec;11(4):402–408. doi: 10.1038/ng1295-402. [DOI] [PubMed] [Google Scholar]
  22. Pal T., Vogl F. D., Chappuis P. O., Tsang R., Brierley J., Renard H., Sanders K., Kantemiroff T., Bagha S., Goldgar D. E. Increased risk for nonmedullary thyroid cancer in the first degree relatives of prevalent cases of nonmedullary thyroid cancer: a hospital-based study. J Clin Endocrinol Metab. 2001 Nov;86(11):5307–5312. doi: 10.1210/jcem.86.11.8010. [DOI] [PubMed] [Google Scholar]
  23. Schlumberger M. J. Papillary and follicular thyroid carcinoma. N Engl J Med. 1998 Jan 29;338(5):297–306. doi: 10.1056/NEJM199801293380506. [DOI] [PubMed] [Google Scholar]
  24. Schork N. J., Boehnke M., Terwilliger J. D., Ott J. Two-trait-locus linkage analysis: a powerful strategy for mapping complex genetic traits. Am J Hum Genet. 1993 Nov;53(5):1127–1136. [PMC free article] [PubMed] [Google Scholar]
  25. Segev D. L., Saji M., Phillips G. S., Westra W. H., Takiyama Y., Piantadosi S., Smallridge R. C., Nishiyama R. H., Udelsman R., Zeiger M. A. Polymerase chain reaction-based microsatellite polymorphism analysis of follicular and Hürthle cell neoplasms of the thyroid. J Clin Endocrinol Metab. 1998 Jun;83(6):2036–2042. doi: 10.1210/jcem.83.6.4882. [DOI] [PubMed] [Google Scholar]
  26. Tallini G., Hsueh A., Liu S., Garcia-Rostan G., Speicher M. R., Ward D. C. Frequent chromosomal DNA unbalance in thyroid oncocytic (Hürthle cell) neoplasms detected by comparative genomic hybridization. Lab Invest. 1999 May;79(5):547–555. [PubMed] [Google Scholar]