Structural and antigenic types of cell wall polysaccharides from viridans group streptococci with receptors for oral actinomyces and streptococcal lectins (original) (raw)
Abstract
Lectin-mediated interactions between oral viridans group streptococci and actinomyces may play an important role in microbial colonization of the tooth surface. The presence of two host-like motifs, either GalNAc beta1-->3Gal (Gn) or Gal beta1-->3GalNAc (G), in the cell wall polysaccharides of five streptococcal strains accounts for the lactose-sensitive coaggregations of these bacteria with Actinomyces naeslundii. Three streptococcal strains which have Gn-containing polysaccharides also participate in GalNAc-sensitive coaggregations with strains of Streptococcus gordonii and S. sanguis. Each Gn- or G-containing polysaccharide is composed of a distinct phosphodiester-linked hexa- or heptasaccharide repeating unit. The occurrence of these polysaccharides on 19 additional viridans group streptococcal strains that participate in lactose-sensitive coaggregations with actinomyces was examined. Negatively charged polysaccharides that reacted with Bauhinia purpurea agglutinin, a Gal and GalNAc binding plant lectin, were isolated from 17 strains by anion exchange column chromatography of mutanolysin-cell wall digests. Results from nuclear magnetic resonance and immunodiffusion identified each of 16 polysaccharides as a known Gn- or G-containing structural type and one polysaccharide as a new but closely related Gn-containing type. Unlike the reactions of lectins, the cross-reactions of most rabbit antisera with these polysaccharides were correlated with structural features other than the host-like motifs. Gn-containing polysaccharides occurred primarily on the strains of S. sanguis and S. oralis while G-containing polysaccharides were more common among the strains of S. gordonii and S. mitis examined. The findings strongly support the hypothesis that lectin-mediated recognition of these streptococci by other oral bacteria depends on a family of antigenically diverse Gn- and G-containing cell wall polysaccharides, the occurrence of which may differ between streptococcal species.
Full Text
The Full Text of this article is available as a PDF (264.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abeygunawardana C., Bush C. A., Cisar J. O. Complete structure of the cell surface polysaccharide of Streptococcus oralis ATCC 10557: a receptor for lectin-mediated interbacterial adherence. Biochemistry. 1991 Jul 2;30(26):6528–6540. doi: 10.1021/bi00240a025. [DOI] [PubMed] [Google Scholar]
- Abeygunawardana C., Bush C. A., Cisar J. O. Complete structure of the cell surface polysaccharide of Streptococcus oralis C104: a 600-MHz NMR study. Biochemistry. 1991 Sep 3;30(35):8568–8577. doi: 10.1021/bi00099a012. [DOI] [PubMed] [Google Scholar]
- Abeygunawardana C., Bush C. A., Cisar J. O. Complete structure of the polysaccharide from Streptococcus sanguis J22. Biochemistry. 1990 Jan 9;29(1):234–248. doi: 10.1021/bi00453a032. [DOI] [PubMed] [Google Scholar]
- Abeygunawardana C., Bush C. A., Tjoa S. S., Fennessey P. V., McNeil M. R. The complete structure of the capsular polysaccharide from Streptococcus sanguis 34. Carbohydr Res. 1989 Aug 15;191(2):279–293. doi: 10.1016/0008-6215(89)85071-2. [DOI] [PubMed] [Google Scholar]
- Brennan M. J., Cisar J. O., Sandberg A. L. A 160-kilodalton epithelial cell surface glycoprotein recognized by plant lectins that inhibit the adherence of Actinomyces naeslundii. Infect Immun. 1986 Jun;52(3):840–845. doi: 10.1128/iai.52.3.840-845.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brennan M. J., Joralmon R. A., Cisar J. O., Sandberg A. L. Binding of Actinomyces naeslundii to glycosphingolipids. Infect Immun. 1987 Feb;55(2):487–489. doi: 10.1128/iai.55.2.487-489.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cassels F. J., Fales H. M., London J., Carlson R. W., van Halbeek H. Structure of a streptococcal adhesin carbohydrate receptor. J Biol Chem. 1990 Aug 25;265(24):14127–14135. [PubMed] [Google Scholar]
- Cassels F. J., Hughes C. V., Nauss J. L. Adhesin receptors of human oral bacteria and modeling of putative adhesin-binding domains. J Ind Microbiol. 1995 Sep;15(3):176–185. doi: 10.1007/BF01569823. [DOI] [PubMed] [Google Scholar]
- Cisar J. O., Barsumian E. L., Siraganian R. P., Clark W. B., Yeung M. K., Hsu S. D., Curl S. H., Vatter A. E., Sandberg A. L. Immunochemical and functional studies of Actinomyces viscosus T14V type 1 fimbriae with monoclonal and polyclonal antibodies directed against the fimbrial subunit. J Gen Microbiol. 1991 Aug;137(8):1971–1979. doi: 10.1099/00221287-137-8-1971. [DOI] [PubMed] [Google Scholar]
- Cisar J. O., Kolenbrander P. E., McIntire F. C. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun. 1979 Jun;24(3):742–752. doi: 10.1128/iai.24.3.742-752.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cisar J. O., Sandberg A. L., Abeygunawardana C., Reddy G. P., Bush C. A. Lectin recognition of host-like saccharide motifs in streptococcal cell wall polysaccharides. Glycobiology. 1995 Oct;5(7):655–662. doi: 10.1093/glycob/5.7.655. [DOI] [PubMed] [Google Scholar]
- Cisar J. O., Takahashi Y., Ruhl S., Donkersloot J. A., Sandberg A. L. Specific inhibitors of bacterial adhesion: observations from the study of gram-positive bacteria that initiate biofilm formation on the tooth surface. Adv Dent Res. 1997 Apr;11(1):168–175. doi: 10.1177/08959374970110010801. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Frandsen E. V., Pedrazzoli V., Kilian M. Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol Immunol. 1991 Jun;6(3):129–133. doi: 10.1111/j.1399-302x.1991.tb00466.x. [DOI] [PubMed] [Google Scholar]
- Glushka J., Cassels F. J., Carlson R. W., van Halbeek H. Complete structure of the adhesin receptor polysaccharide of Streptococcus oralis ATCC 55229 (Streptococcus sanguis H1). Biochemistry. 1992 Nov 10;31(44):10741–10746. doi: 10.1021/bi00159a014. [DOI] [PubMed] [Google Scholar]
- Koga T., Okahashi N., Yamamoto T., Mizuno J., Inoue M., Hamada S. Purification and immunochemical characterization of Streptococcus sanguis ATCC 10557 serotype II carbohydrate antigen. Infect Immun. 1983 Nov;42(2):696–700. doi: 10.1128/iai.42.2.696-700.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolenbrander P. E., Andersen R. N., Moore L. V. Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl Environ Microbiol. 1990 Dec;56(12):3890–3894. doi: 10.1128/aem.56.12.3890-3894.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntire F. C., Bush C. A., Wu S. S., Li S. C., Li Y. T., McNeil M., Tjoa S. S., Fennessey P. V. Structure of a new hexasaccharide from the coaggregation polysaccharide of Streptococcus sanguis 34. Carbohydr Res. 1987 Aug 15;166(1):133–143. doi: 10.1016/0008-6215(87)80050-2. [DOI] [PubMed] [Google Scholar]
- McIntire F. C., Crosby L. K., Barlow J. J., Matta K. L. Structural preferences of beta-galactoside-reactive lectins on Actinomyces viscosus T14V and Actinomyces naeslundii WVU45. Infect Immun. 1983 Aug;41(2):848–850. doi: 10.1128/iai.41.2.848-850.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntire F. C., Crosby L. K., Vatter A. E., Cisar J. O., McNeil M. R., Bush C. A., Tjoa S. S., Fennessey P. V. A polysaccharide from Streptococcus sanguis 34 that inhibits coaggregation of S. sanguis 34 with Actinomyces viscosus T14V. J Bacteriol. 1988 May;170(5):2229–2235. doi: 10.1128/jb.170.5.2229-2235.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntire F. C., Crosby L. K., Vatter A. E. Inhibitors of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34: beta-galactosides, related sugars, and anionic amphipathic compounds. Infect Immun. 1982 Apr;36(1):371–378. doi: 10.1128/iai.36.1.371-378.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntire F. C., Vatter A. E., Baros J., Arnold J. Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34. Infect Immun. 1978 Sep;21(3):978–988. doi: 10.1128/iai.21.3.978-988.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nyvad B., Kilian M. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res. 1987 Oct;95(5):369–380. doi: 10.1111/j.1600-0722.1987.tb01627.x. [DOI] [PubMed] [Google Scholar]
- Osawa T., Irimura T., Kawaguchi T. Bauhinia purpurea agglutinin. Methods Enzymol. 1978;50:367–372. doi: 10.1016/0076-6879(78)50044-x. [DOI] [PubMed] [Google Scholar]
- Osterland C. K., Miller E. J., Karakawa W. W., Krause R. M. Characteristics of streptococcal group-specific antibody isolated from hyperimmune rabbits. J Exp Med. 1966 Apr 1;123(4):599–614. doi: 10.1084/jem.123.4.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy G. P., Abeygunawardana C., Bush C. A., Cisar J. O. The cell wall polysaccharide of Streptococcus gordonii 38: structure and immunochemical comparison with the receptor polysaccharides of Streptococcus oralis 34 and Streptococcus mitis J22. Glycobiology. 1994 Apr;4(2):183–192. doi: 10.1093/glycob/4.2.183. [DOI] [PubMed] [Google Scholar]
- Reddy G. P., Chang C. C., Bush C. A. Determination by heteronuclear NMR spectroscopy of the complete structure of the cell wall polysaccharide of Streptococcus sanguis strain K103. Anal Chem. 1993 Apr 1;65(7):913–921. doi: 10.1021/ac00055a014. [DOI] [PubMed] [Google Scholar]
- Rosan B., Argenbright L. Antigenic determinant of the Lancefield group H antigen of Streptococcus sanguis. Infect Immun. 1982 Dec;38(3):925–931. doi: 10.1128/iai.38.3.925-931.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruhl S., Sandberg A. L., Cole M. F., Cisar J. O. Recognition of immunoglobulin A1 by oral actinomyces and streptococcal lectins. Infect Immun. 1996 Dec;64(12):5421–5424. doi: 10.1128/iai.64.12.5421-5424.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandberg A. L., Ruhl S., Joralmon R. A., Brennan M. J., Sutphin M. J., Cisar J. O. Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin. Infect Immun. 1995 Jul;63(7):2625–2631. doi: 10.1128/iai.63.7.2625-2631.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato S., Koga T., Inoue M. A possible mechanism for the cellular coaggregation between Actinomyces viscosus ATCC 19246 and Streptococcus sanguis ATCC 10557. J Gen Microbiol. 1984 Jun;130(6):1351–1357. doi: 10.1099/00221287-130-6-1351. [DOI] [PubMed] [Google Scholar]
- Schneider H., Griffiss J. M., Boslego J. W., Hitchcock P. J., Zahos K. M., Apicella M. A. Expression of paragloboside-like lipooligosaccharides may be a necessary component of gonococcal pathogenesis in men. J Exp Med. 1991 Dec 1;174(6):1601–1605. doi: 10.1084/jem.174.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segal D. M., Hurwitz E. Binding of affinity cross-linked oligomers of IgG to cells bearing Fc receptors. J Immunol. 1977 Apr;118(4):1338–1337. [PubMed] [Google Scholar]
- Strömberg N., Karlsson K. A. Characterization of the binding of Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach. J Biol Chem. 1990 Jul 5;265(19):11251–11258. [PubMed] [Google Scholar]
- Troy F. A., 2nd Polysialylation: from bacteria to brains. Glycobiology. 1992 Feb;2(1):5–23. doi: 10.1093/glycob/2.1.5. [DOI] [PubMed] [Google Scholar]
- Xu Q., Bush C. A. Molecular modeling of the flexible cell wall polysaccharide of Streptococcus mitis J22 on the basis of heteronuclear NMR coupling constants. Biochemistry. 1996 Nov 19;35(46):14521–14529. doi: 10.1021/bi961262+. [DOI] [PubMed] [Google Scholar]
- Yang Q. L., Gotschlich E. C. Variation of gonococcal lipooligosaccharide structure is due to alterations in poly-G tracts in lgt genes encoding glycosyl transferases. J Exp Med. 1996 Jan 1;183(1):323–327. doi: 10.1084/jem.183.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yokogawa K., Kawata S., Nishimura S., Ikeda Y., Yoshimura Y. Mutanolysin, bacteriolytic agent for cariogenic Streptococci: partial purification and properties. Antimicrob Agents Chemother. 1974 Aug;6(2):156–165. doi: 10.1128/aac.6.2.156. [DOI] [PMC free article] [PubMed] [Google Scholar]