A novel cyclic beta-1,2-glucan mutant of Rhizobium meliloti (original) (raw)

Abstract

The periplasmic cyclic beta-1,2-glucans produced by bacteria within the Rhizobiaceae family provide functions during hypo-osmotic adaptation and plant infection. In Rhizobium meliloti, these molecules are highly modified with phosphoglycerol and succinyl substituents, and it is possible that the anionic character of these glucans is important for their functions. In the present study, we have used a thin-layer chromatographic screening method to identify a novel R. meliloti mutant specifically blocked in its ability to transfer phosphoglycerol substituents to the cyclic beta-1,2-glucan backbone. Further analysis revealed that the cyclic glucans produced by this mutant contained elevated levels of succinyl substituents. As a result, the overall anionic charge on the cyclic beta-1,2-glucans was found to be similar to that of wild-type cells. Despite this difference in cyclic beta-1,2-glucan structure, the mutant was shown to effectively nodulate alfalfa and to grow as well as wild-type cells in hypo-osmotic media.

Full Text

The Full Text of this article is available as a PDF (260.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bohin J. P., Kennedy E. P. Regulation of the synthesis of membrane-derived oligosaccharides in Escherichia coli. Assay of phosphoglycerol transferase I in vivo. J Biol Chem. 1984 Jul 10;259(13):8388–8393. [PubMed] [Google Scholar]
  2. Breedveld M. W., Benesi A. J., Marco M. L., Miller K. J. Effect of Phosphate Limitation on Synthesis of Periplasmic Cyclic (beta)-(1,2)-Glucans. Appl Environ Microbiol. 1995 Mar;61(3):1045–1053. doi: 10.1128/aem.61.3.1045-1053.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breedveld M. W., Miller K. J. Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol Rev. 1994 Jun;58(2):145–161. doi: 10.1128/mr.58.2.145-161.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breedveld M. W., Miller K. J. Synthesis of glycerophosphorylated cyclic (1,2)-beta-glucans in Rhizobium meliloti strain 1021 after osmotic shock. Microbiology. 1995 Mar;141(Pt 3):583–588. doi: 10.1099/13500872-141-3-583. [DOI] [PubMed] [Google Scholar]
  5. Breedveld M. W., Yoo J. S., Reinhold V. N., Miller K. J. Synthesis of glycerophosphorylated cyclic beta-(1,2)-glucans by Rhizobium meliloti ndv mutants. J Bacteriol. 1994 Feb;176(4):1047–1051. doi: 10.1128/jb.176.4.1047-1051.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cangelosi G. A., Martinetti G., Leigh J. A., Lee C. C., Thienes C., Theines C., Nester E. W. Role for [corrected] Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. J Bacteriol. 1989 Mar;171(3):1609–1615. doi: 10.1128/jb.171.3.1609-1615.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cangelosi G. A., Martinetti G., Nester E. W. Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic beta-1,2-glucan. J Bacteriol. 1990 Apr;172(4):2172–2174. doi: 10.1128/jb.172.4.2172-2174.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dickstein R., Bisseling T., Reinhold V. N., Ausubel F. M. Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development. Genes Dev. 1988 Jun;2(6):677–687. doi: 10.1101/gad.2.6.677. [DOI] [PubMed] [Google Scholar]
  9. Dylan T., Helinski D. R., Ditta G. S. Hypoosmotic adaptation in Rhizobium meliloti requires beta-(1----2)-glucan. J Bacteriol. 1990 Mar;172(3):1400–1408. doi: 10.1128/jb.172.3.1400-1408.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dylan T., Ielpi L., Stanfield S., Kashyap L., Douglas C., Yanofsky M., Nester E., Helinski D. R., Ditta G. Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4403–4407. doi: 10.1073/pnas.83.12.4403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dylan T., Nagpal P., Helinski D. R., Ditta G. S. Symbiotic pseudorevertants of Rhizobium meliloti ndv mutants. J Bacteriol. 1990 Mar;172(3):1409–1417. doi: 10.1128/jb.172.3.1409-1417.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fiedler W., Rotering H. Characterization of an Escherichia coli mdoB mutant strain unable to transfer sn-1-phosphoglycerol to membrane-derived oligosaccharides. J Biol Chem. 1985 Apr 25;260(8):4799–4806. [PubMed] [Google Scholar]
  13. Geremia R. A., Cavaignac S., Zorreguieta A., Toro N., Olivares J., Ugalde R. A. A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharide but fails to form beta-(1----2) glucan. J Bacteriol. 1987 Feb;169(2):880–884. doi: 10.1128/jb.169.2.880-884.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Glazebrook J., Walker G. C. Genetic techniques in Rhizobium meliloti. Methods Enzymol. 1991;204:398–418. doi: 10.1016/0076-6879(91)04021-f. [DOI] [PubMed] [Google Scholar]
  15. Hunt W. P., Gore R. S., Miller K. J. Diglyceride Kinase Activity in Cell Extracts of Rhizobium meliloti: Evidence for a Diglyceride Cycle during Cyclic beta-1,2-Glucan Biosynthesis. Appl Environ Microbiol. 1991 Dec;57(12):3645–3647. doi: 10.1128/aem.57.12.3645-3647.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ielpi L., Dylan T., Ditta G. S., Helinski D. R., Stanfield S. W. The ndvB locus of Rhizobium meliloti encodes a 319-kDa protein involved in the production of beta-(1----2)-glucan. J Biol Chem. 1990 Feb 15;265(5):2843–2851. [PubMed] [Google Scholar]
  17. Jackson B. J., Bohin J. P., Kennedy E. P. Biosynthesis of membrane-derived oligosaccharides: characterization of mdoB mutants defective in phosphoglycerol transferase I activity. J Bacteriol. 1984 Dec;160(3):976–981. doi: 10.1128/jb.160.3.976-981.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jackson B. J., Kennedy E. P. The biosynthesis of membrane-derived oligosaccharides. A membrane-bound phosphoglycerol transferase. J Biol Chem. 1983 Feb 25;258(4):2394–2398. [PubMed] [Google Scholar]
  19. Leigh J. A., Reed J. W., Hanks J. F., Hirsch A. M., Walker G. C. Rhizobium meliloti mutants that fail to succinylate their calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell. 1987 Nov 20;51(4):579–587. doi: 10.1016/0092-8674(87)90127-9. [DOI] [PubMed] [Google Scholar]
  20. Marvel D. J., Torrey J. G., Ausubel F. M. Rhizobium symbiotic genes required for nodulation of legume and nonlegume hosts. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1319–1323. doi: 10.1073/pnas.84.5.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miller K. J., Gore R. S., Benesi A. J. Phosphoglycerol substituents present on the cyclic beta-1,2-glucans of Rhizobium meliloti 1021 are derived from phosphatidylglycerol. J Bacteriol. 1988 Oct;170(10):4569–4575. doi: 10.1128/jb.170.10.4569-4575.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miller K. J., Kennedy E. P., Reinhold V. N. Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science. 1986 Jan 3;231(4733):48–51. doi: 10.1126/science.3941890. [DOI] [PubMed] [Google Scholar]
  23. Miller K. J., McKinstry M. W., Hunt W. P., Nixon B. T. Identification of the diacylglycerol kinase structural gene of Rhizobium meliloti 1021. Mol Plant Microbe Interact. 1992 Sep-Oct;5(5):363–371. doi: 10.1094/mpmi-5-363. [DOI] [PubMed] [Google Scholar]
  24. Miller K. J., Reinhold V. N., Weissborn A. C., Kennedy E. P. Cyclic glucans produced by Agrobacterium tumefaciens are substituted with sn-1-phosphoglycerol residues. Biochim Biophys Acta. 1987 Jul 10;901(1):112–118. doi: 10.1016/0005-2736(87)90262-8. [DOI] [PubMed] [Google Scholar]
  25. Nagpal P., Khanuja S. P., Stanfield S. W. Suppression of the ndv mutant phenotype of Rhizobium meliloti by cloned exo genes. Mol Microbiol. 1992 Feb;6(4):479–488. doi: 10.1111/j.1365-2958.1992.tb01492.x. [DOI] [PubMed] [Google Scholar]
  26. Stacey G., Paau A. S., Brill W. J. Host recognition in the Rhizobium-soybean symbiosis. Plant Physiol. 1980 Oct;66(4):609–614. doi: 10.1104/pp.66.4.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stanfield S. W., Ielpi L., O'Brochta D., Helinski D. R., Ditta G. S. The ndvA gene product of Rhizobium meliloti is required for beta-(1----2)glucan production and has homology to the ATP-binding export protein HlyB. J Bacteriol. 1988 Aug;170(8):3523–3530. doi: 10.1128/jb.170.8.3523-3530.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zorreguieta A., Cavaignac S., Geremia R. A., Ugalde R. A. Osmotic regulation of beta(1-2) glucan synthesis in members of the family Rhizobiaceae. J Bacteriol. 1990 Aug;172(8):4701–4704. doi: 10.1128/jb.172.8.4701-4704.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zorreguieta A., Geremia R. A., Cavaignac S., Cangelosi G. A., Nester E. W., Ugalde R. A. Identification of the product of an Agrobacterium tumefaciens chromosomal virulence gene. Mol Plant Microbe Interact. 1988 Mar;1(3):121–127. doi: 10.1094/mpmi-1-121. [DOI] [PubMed] [Google Scholar]
  30. Zorreguieta A., Ugalde R. A. Formation in Rhizobium and Agrobacterium spp. of a 235-kilodalton protein intermediate in beta-D(1-2) glucan synthesis. J Bacteriol. 1986 Sep;167(3):947–951. doi: 10.1128/jb.167.3.947-951.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. de Iannino N. I., Ugalde R. A. Biochemical characterization of avirulent Agrobacterium tumefaciens chvA mutants: synthesis and excretion of beta-(1-2)glucan. J Bacteriol. 1989 May;171(5):2842–2849. doi: 10.1128/jb.171.5.2842-2849.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]