Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis (original) (raw)

Abstract

There is little information on the trafficking of eukaryotic lipids from a host cell to either the cytoplasmic membrane of or the vacuolar membrane surrounding intracellular pathogens. Purified Chlamydia trachomatis, an obligate intracellular bacterial parasite, contains several eukaryotic glycerophospholipids, yet attempts to demonstrate transfer of these lipids to the chlamydial cell membrane have not been successful. In this report, we demonstrate that eukaryotic glycerophospholipids are trafficked from the host cell to C. trachomatis. Phospholipid trafficking was assessed by monitoring the incorporation of radiolabelled isoleucine, a precursor of C. trachomatis specific branched-chain fatty acids, into host-derived glycerophospholipids and by monitoring the transfer of host phosphatidylserine to chlamydiae and its subsequent decarboxylation to form phosphatidylethanolamine. Phospholipid trafficking to chlamydiae was unaffected by brefeldin A, an inhibitor of Golgi function. Furthermore, no changes in trafficking were observed when C. trachomatis was grown in a mutant cell line with a nonfunctional, nonspecific phospholipid transfer protein. Host glycerophospholipids are modified by C. trachomatis, such that a host-synthesized straight-chain fatty acid is replaced with a chlamydia-synthesized branched-chain fatty acid. We also demonstrate that despite the acquisition of host-derived phospholipids, C. trachomatis is capable of de novo synthesis of phospholipids typically synthesized by prokaryotic cells. Our results provide novel information on chlamydial phospholipid metabolism and eukaryotic cell lipid trafficking, and they increase our understanding of the evolutionary steps leading to the establishment of an intimate metabolic association between an obligate intracellular bacterial parasite and a eukaryotic host cell.

Full Text

The Full Text of this article is available as a PDF (185.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beatty P. R., Stephens R. S. CD8+ T lymphocyte-mediated lysis of Chlamydia-infected L cells using an endogenous antigen pathway. J Immunol. 1994 Nov 15;153(10):4588–4595. [PubMed] [Google Scholar]
  2. Caldwell H. D., Kromhout J., Schachter J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun. 1981 Mar;31(3):1161–1176. doi: 10.1128/iai.31.3.1161-1176.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark J. D., Schievella A. R., Nalefski E. A., Lin L. L. Cytosolic phospholipase A2. J Lipid Mediat Cell Signal. 1995 Oct;12(2-3):83–117. doi: 10.1016/0929-7855(95)00012-f. [DOI] [PubMed] [Google Scholar]
  4. Cossart P., Boquet P., Normark S., Rappuoli R. Cellular microbiology emerging. Science. 1996 Jan 19;271(5247):315–316. doi: 10.1126/science.271.5247.315. [DOI] [PubMed] [Google Scholar]
  5. Dennis E. A., Kennedy E. P. Intracellular sites of lipid synthesis and the biogenesis of mitochondria. J Lipid Res. 1972 Mar;13(2):263–267. [PubMed] [Google Scholar]
  6. Esko J. D., Wermuth M. M., Raetz C. R. Thermolabile CDP-choline synthetase in an animal cell mutant defective in lecithin formation. J Biol Chem. 1981 Jul 25;256(14):7388–7393. [PubMed] [Google Scholar]
  7. Fraiz J., Jones R. B. Chlamydial infections. Annu Rev Med. 1988;39:357–370. doi: 10.1146/annurev.me.39.020188.002041. [DOI] [PubMed] [Google Scholar]
  8. Fukushi H., Hirai K. Chlamydia pecorum--the fourth species of genus Chlamydia. Microbiol Immunol. 1993;37(7):516–522. [PubMed] [Google Scholar]
  9. Glaser K. B. Regulation of phospholipase A2 enzymes: selective inhibitors and their pharmacological potential. Adv Pharmacol. 1995;32:31–66. doi: 10.1016/s1054-3589(08)61011-x. [DOI] [PubMed] [Google Scholar]
  10. Grayston J. T., Kuo C. C., Wang S. P., Altman J. A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med. 1986 Jul 17;315(3):161–168. doi: 10.1056/NEJM198607173150305. [DOI] [PubMed] [Google Scholar]
  11. Hackstadt T., Rockey D. D., Heinzen R. A., Scidmore M. A. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J. 1996 Mar 1;15(5):964–977. [PMC free article] [PubMed] [Google Scholar]
  12. Hackstadt T., Scidmore M. A., Rockey D. D. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4877–4881. doi: 10.1073/pnas.92.11.4877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haque M., Hirai Y., Yokota K., Mori N., Jahan I., Ito H., Hotta H., Yano I., Kanemasa Y., Oguma K. Lipid profile of Helicobacter spp.: presence of cholesteryl glucoside as a characteristic feature. J Bacteriol. 1996 Apr;178(7):2065–2070. doi: 10.1128/jb.178.7.2065-2070.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haque M., Hirai Y., Yokota K., Oguma K. Steryl glycosides: a characteristic feature of the Helicobacter spp.? J Bacteriol. 1995 Sep;177(18):5334–5337. doi: 10.1128/jb.177.18.5334-5337.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hatch G. M. Cardiolipin biosynthesis in the isolated heart. Biochem J. 1994 Jan 1;297(Pt 1):201–208. doi: 10.1042/bj2970201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hatch G. M., McClarty G. Regulation of cardiolipin biosynthesis in H9c2 cardiac myoblasts by cytidine 5'-triphosphate. J Biol Chem. 1996 Oct 18;271(42):25810–25816. doi: 10.1074/jbc.271.42.25810. [DOI] [PubMed] [Google Scholar]
  17. Hatch G. M. Regulation of cardiolipin biosynthesis in the heart. Mol Cell Biochem. 1996 Jun 21;159(2):139–148. doi: 10.1007/BF00420916. [DOI] [PubMed] [Google Scholar]
  18. Hatch G. M., Vance D. E. Stimulation of sphingomyelin biosynthesis by brefeldin A and sphingomyelin breakdown by okadaic acid treatment of rat hepatocytes. J Biol Chem. 1992 Jun 25;267(18):12443–12451. [PubMed] [Google Scholar]
  19. Heinzen R. A., Scidmore M. A., Rockey D. D., Hackstadt T. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun. 1996 Mar;64(3):796–809. doi: 10.1128/iai.64.3.796-809.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hirai Y., Haque M., Yoshida T., Yokota K., Yasuda T., Oguma K. Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis. J Bacteriol. 1995 Sep;177(18):5327–5333. doi: 10.1128/jb.177.18.5327-5333.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hovius R., Faber B., Brigot B., Nicolay K., de Kruijff B. On the mechanism of the mitochondrial decarboxylation of phosphatidylserine. J Biol Chem. 1992 Aug 25;267(24):16790–16795. [PubMed] [Google Scholar]
  22. Hovius R., Lambrechts H., Nicolay K., de Kruijff B. Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta. 1990 Jan 29;1021(2):217–226. doi: 10.1016/0005-2736(90)90036-n. [DOI] [PubMed] [Google Scholar]
  23. Kaneda T. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev. 1991 Jun;55(2):288–302. doi: 10.1128/mr.55.2.288-302.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kelsall A., Meuth M. Direct selection of Chinese hamster ovary strains deficient in CTP synthetase activity. Somat Cell Mol Genet. 1988 Mar;14(2):149–154. doi: 10.1007/BF01534400. [DOI] [PubMed] [Google Scholar]
  25. Kramer R. M., Sharp J. D. Recent insights into the structure, function and biology of cPLA2. Agents Actions Suppl. 1995;46:65–76. doi: 10.1007/978-3-0348-7276-8_7. [DOI] [PubMed] [Google Scholar]
  26. Kuo C. C., Jackson L. A., Campbell L. A., Grayston J. T. Chlamydia pneumoniae (TWAR). Clin Microbiol Rev. 1995 Oct;8(4):451–461. doi: 10.1128/cmr.8.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Lippincott-Schwartz J., Yuan L. C., Bonifacino J. S., Klausner R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989 Mar 10;56(5):801–813. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Majeed M., Gustafsson M., Kihlström E., Stendahl O. Roles of Ca2+ and F-actin in intracellular aggregation of Chlamydia trachomatis in eucaryotic cells. Infect Immun. 1993 Apr;61(4):1406–1414. doi: 10.1128/iai.61.4.1406-1414.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Matsumoto A. Isolation and electron microscopic observations of intracytoplasmic inclusions containing Chlamydia psittaci. J Bacteriol. 1981 Jan;145(1):605–612. doi: 10.1128/jb.145.1.605-612.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McClarty G. Chlamydiae and the biochemistry of intracellular parasitism. Trends Microbiol. 1994 May;2(5):157–164. doi: 10.1016/0966-842x(94)90665-3. [DOI] [PubMed] [Google Scholar]
  32. McClarty G., Tipples G. In situ studies on incorporation of nucleic acid precursors into Chlamydia trachomatis DNA. J Bacteriol. 1991 Aug;173(16):4922–4931. doi: 10.1128/jb.173.16.4922-4931.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Misumi Y., Misumi Y., Miki K., Takatsuki A., Tamura G., Ikehara Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem. 1986 Aug 25;261(24):11398–11403. [PubMed] [Google Scholar]
  34. Mollenhauer H. H., Morré D. J., Rowe L. D. Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim Biophys Acta. 1990 May 7;1031(2):225–246. doi: 10.1016/0304-4157(90)90008-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Moulder J. W. Interaction of chlamydiae and host cells in vitro. Microbiol Rev. 1991 Mar;55(1):143–190. doi: 10.1128/mr.55.1.143-190.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ridderhof J. C., Barnes R. C. Fusion of inclusions following superinfection of HeLa cells by two serovars of Chlamydia trachomatis. Infect Immun. 1989 Oct;57(10):3189–3193. doi: 10.1128/iai.57.10.3189-3193.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rockey D. D., Fischer E. R., Hackstadt T. Temporal analysis of the developing Chlamydia psittaci inclusion by use of fluorescence and electron microscopy. Infect Immun. 1996 Oct;64(10):4269–4278. doi: 10.1128/iai.64.10.4269-4278.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rouser G., Siakotos A. N., Fleischer S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids. 1966 Jan;1(1):85–86. doi: 10.1007/BF02668129. [DOI] [PubMed] [Google Scholar]
  39. Rusiñol A. E., Cui Z., Chen M. H., Vance J. E. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem. 1994 Nov 4;269(44):27494–27502. [PubMed] [Google Scholar]
  40. Schramm N., Wyrick P. B. Cytoskeletal requirements in Chlamydia trachomatis infection of host cells. Infect Immun. 1995 Jan;63(1):324–332. doi: 10.1128/iai.63.1.324-332.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Scidmore M. A., Fischer E. R., Hackstadt T. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol. 1996 Jul;134(2):363–374. doi: 10.1083/jcb.134.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shiao Y. J., Lupo G., Vance J. E. Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine. J Biol Chem. 1995 May 12;270(19):11190–11198. doi: 10.1074/jbc.270.19.11190. [DOI] [PubMed] [Google Scholar]
  43. Small P. L., Ramakrishnan L., Falkow S. Remodeling schemes of intracellular pathogens. Science. 1994 Feb 4;263(5147):637–639. doi: 10.1126/science.8303269. [DOI] [PubMed] [Google Scholar]
  44. Stephens R. S. Challenge of Chlamydia research. Infect Agents Dis. 1992 Dec;1(6):279–293. [PubMed] [Google Scholar]
  45. Taraska T., Ward D. M., Ajioka R. S., Wyrick P. B., Davis-Kaplan S. R., Davis C. H., Kaplan J. The late chlamydial inclusion membrane is not derived from the endocytic pathway and is relatively deficient in host proteins. Infect Immun. 1996 Sep;64(9):3713–3727. doi: 10.1128/iai.64.9.3713-3727.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tipples G., McClarty G. Isolation and initial characterization of a series of Chlamydia trachomatis isolates selected for hydroxyurea resistance by a stepwise procedure. J Bacteriol. 1991 Aug;173(16):4932–4940. doi: 10.1128/jb.173.16.4932-4940.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vance J. E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem. 1990 May 5;265(13):7248–7256. [PubMed] [Google Scholar]
  48. Voelker D. R. Organelle biogenesis and intracellular lipid transport in eukaryotes. Microbiol Rev. 1991 Dec;55(4):543–560. doi: 10.1128/mr.55.4.543-560.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wirtz K. W., Gadella T. W., Jr Properties and modes of action of specific and non-specific phospholipid transfer proteins. Experientia. 1990 Jun 15;46(6):592–599. doi: 10.1007/BF01939698. [DOI] [PubMed] [Google Scholar]
  50. van Heusden G. P., Bos K., Raetz C. R., Wirtz K. W. Chinese hamster ovary cells deficient in peroxisomes lack the nonspecific lipid transfer protein (sterol carrier protein 2). J Biol Chem. 1990 Mar 5;265(7):4105–4110. [PubMed] [Google Scholar]