Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia (original) (raw)

. 1997 Mar;150(3):815–821.

Abstract

It has been shown that solid tumors progress in concert with an induction of tumor angiogenesis. It is not known, however, whether a similar phenomenon occurs in leukemia. Angiogenesis was characterized immunohistochemically by factor VIII staining of bone marrow biopsies and quantified by assessment of microvessel density using previously described techniques. We evaluated bone marrow biopsies from 40 children with newly diagnosed, untreated acute lymphoblastic leukemia. In 22 of the patients, we also evaluated angiogenesis after the completion of remission induction chemotherapy. Control specimens were obtained from children undergoing staging evaluations at the time of diagnosis of solid tumors and lymphomas. Microvessels were counted throughout the entire core specimen in consecutive x 200 fields, and a median count per field (cpf) was calculated. In addition, the number of microvessels in the single x 200 field with the highest microvessel density was designated as the "hot spot." Biopsies from children with leukemia and from controls showed median microvessel densities of 42 and 6 counts per field, respectively (P < or = 0.0001). Microvessel density of the hot spots of leukemia specimens and controls were also significantly different, 51 and 8, respectively (P < or = 0.0001). A computer-aided three-dimensional reconstruction model of bone marrow vascularity showed a complex, arborizing branching of microvessels in leukemic specimens compared with single, straight microvessels without branching in controls. Urinary basic fibroblast growth factor, a potent angiogenic factor, was measured in 22 of the children with newly diagnosed leukemia and in 39 normal, age-matched controls. Urinary basic fibroblast growth factor levels were increased in all 22 patients before treatment, were variable during induction chemotherapy, and demonstrated statistically insignificant decreases at the time of complete remission. These findings suggest that leukemia cells induce angiogenesis in the bone marrow and that leukemia might be angiogenesis dependent and raise the possibility for a role of antiangiogenic drugs in the treatment of leukemia.

815

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhunchet E., Fujieda K. Capillarization and venularization of hepatic sinusoids in porcine serum-induced rat liver fibrosis: a mechanism to maintain liver blood flow. Hepatology. 1993 Dec;18(6):1450–1458. [PubMed] [Google Scholar]
  2. Brunner G., Nguyen H., Gabrilove J., Rifkin D. B., Wilson E. L. Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells. Blood. 1993 Feb 1;81(3):631–638. [PubMed] [Google Scholar]
  3. Busam K. J., Berwick M., Blessing K., Fandrey K., Kang S., Karaoli T., Fine J., Cochran A. J., White W. L., Rivers J. Tumor vascularity is not a prognostic factor for malignant melanoma of the skin. Am J Pathol. 1995 Oct;147(4):1049–1056. [PMC free article] [PubMed] [Google Scholar]
  4. Chodak G. W., Hospelhorn V., Judge S. M., Mayforth R., Koeppen H., Sasse J. Increased levels of fibroblast growth factor-like activity in urine from patients with bladder or kidney cancer. Cancer Res. 1988 Apr 15;48(8):2083–2088. [PubMed] [Google Scholar]
  5. Chodak G. W., Scheiner C. J., Zetter B. R. Urine from patients with transitional-cell carcinoma stimulates migration of capillary endothelial cells. N Engl J Med. 1981 Oct 8;305(15):869–874. doi: 10.1056/NEJM198110083051506. [DOI] [PubMed] [Google Scholar]
  6. De Bruyn P. P., Breen P. C., Thomas T. B. The microcirculation of the bone marrow. Anat Rec. 1970 Sep;168(1):55–68. doi: 10.1002/ar.1091680105. [DOI] [PubMed] [Google Scholar]
  7. Dubuisson L., Boussarie L., Bedin C. A., Balabaud C., Bioulac-Sage P. Transformation of sinusoids into capillaries in a rat model of selenium-induced nodular regenerative hyperplasia: an immunolight and immunoelectron microscopic study. Hepatology. 1995 Mar;21(3):805–814. [PubMed] [Google Scholar]
  8. Folkman J., Shing Y. Angiogenesis. J Biol Chem. 1992 Jun 5;267(16):10931–10934. [PubMed] [Google Scholar]
  9. Fujimoto K., Ichimori Y., Kakizoe T., Okajima E., Sakamoto H., Sugimura T., Terada M. Increased serum levels of basic fibroblast growth factor in patients with renal cell carcinoma. Biochem Biophys Res Commun. 1991 Oct 15;180(1):386–392. doi: 10.1016/s0006-291x(05)81305-1. [DOI] [PubMed] [Google Scholar]
  10. García-Monzón C., Sánchez-Madrid F., García-Buey L., García-Arroyo A., García-Sánchez A., Moreno-Otero R. Vascular adhesion molecule expression in viral chronic hepatitis: evidence of neoangiogenesis in portal tracts. Gastroenterology. 1995 Jan;108(1):231–241. doi: 10.1016/0016-5085(95)90029-2. [DOI] [PubMed] [Google Scholar]
  11. Graham C. H., Rivers J., Kerbel R. S., Stankiewicz K. S., White W. L. Extent of vascularization as a prognostic indicator in thin (< 0.76 mm) malignant melanomas. Am J Pathol. 1994 Sep;145(3):510–514. [PMC free article] [PubMed] [Google Scholar]
  12. Harris K. M., Stevens J. K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci. 1989 Aug;9(8):2982–2997. doi: 10.1523/JNEUROSCI.09-08-02982.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harris K. M., Stevens J. K. Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J Neurosci. 1988 Dec;8(12):4455–4469. doi: 10.1523/JNEUROSCI.08-12-04455.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maeda K., Chung Y. S., Takatsuka S., Ogawa Y., Sawada T., Yamashita Y., Onoda N., Kato Y., Nitta A., Arimoto Y. Tumor angiogenesis as a predictor of recurrence in gastric carcinoma. J Clin Oncol. 1995 Feb;13(2):477–481. doi: 10.1200/JCO.1995.13.2.477. [DOI] [PubMed] [Google Scholar]
  15. Martinez-Hernandez A., Martinez J. The role of capillarization in hepatic failure: studies in carbon tetrachloride-induced cirrhosis. Hepatology. 1991 Nov;14(5):864–874. doi: 10.1002/hep.1840140519. [DOI] [PubMed] [Google Scholar]
  16. Nguyen M., Watanabe H., Budson A. E., Richie J. P., Folkman J. Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. J Natl Cancer Inst. 1993 Feb 3;85(3):241–242. doi: 10.1093/jnci/85.3.241. [DOI] [PubMed] [Google Scholar]
  17. Nguyen M., Watanabe H., Budson A. E., Richie J. P., Hayes D. F., Folkman J. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst. 1994 Mar 2;86(5):356–361. doi: 10.1093/jnci/86.5.356. [DOI] [PubMed] [Google Scholar]
  18. Pearlstein R. A., Kirschner L., Simons J., Machell S., White W. F., Sidman R. L. A multimodal system for reconstruction and quantification of neurologic structures. Anal Quant Cytol Histol. 1986 Jun;8(2):108–115. [PubMed] [Google Scholar]
  19. Srivastava A., Laidler P., Davies R. P., Horgan K., Hughes L. E. The prognostic significance of tumor vascularity in intermediate-thickness (0.76-4.0 mm thick) skin melanoma. A quantitative histologic study. Am J Pathol. 1988 Nov;133(2):419–423. [PMC free article] [PubMed] [Google Scholar]
  20. Teicher B. A., Holden S. A., Ara G., Sotomayor E. A., Huang Z. D., Chen Y. N., Brem H. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int J Cancer. 1994 Jun 15;57(6):920–925. doi: 10.1002/ijc.2910570624. [DOI] [PubMed] [Google Scholar]
  21. Urashima S., Tsutsumi M., Nakase K., Wang J. S., Takada A. Studies on capillarization of the hepatic sinusoids in alcoholic liver disease. Alcohol Alcohol Suppl. 1993;1B:77–84. doi: 10.1093/alcalc/28.supplement_1b.77. [DOI] [PubMed] [Google Scholar]
  22. Weidner N., Semple J. P., Welch W. R., Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med. 1991 Jan 3;324(1):1–8. doi: 10.1056/NEJM199101033240101. [DOI] [PubMed] [Google Scholar]