Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by alpha v beta 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response (original) (raw)
. 1996 Sep;149(3):911–921.
Abstract
Eosinophils may mediate tissue injury in a number of allergic diseases. Previously, we reported that eosinophils constitutively undergo apoptosis (programmed cell death) in culture. As this led to phagocytosis of the intact senescent cell by macrophages, we proposed that apoptosis represented an injury-limiting eosinophil disposal mechanism. Ingestion of apoptotic neutrophils by human monocyte-derived macrophages (M phi s) was found to be mediated by adhesive interactions between thrombospondin and the M phi alpha v beta 3 vitronectin receptor integrin and M phi CD36. As this failed to elicit a pro-inflammatory response from M phi s, we sought evidence that this specific, nonphlogistic clearance mechanism may operate in eosinophil disposal. In this study, we found that M phi ingestion of apoptotic eosinophils was specifically inhibited by monoclonal antibodies to M phi alpha v beta 3, CD36, and thrombospondin and by other inhibitors of this recognition mechanism including RGD peptide and amino sugars. Furthermore, not only did M phi ingestion of intact apoptotic eosinophils fail to stimulate release of the phlogistic eicosanoid thromboxane, but there was also a lack of increased release of the pro-inflammatory cytokine granulocyte/macrophage colony-stimulating factor. However, increased release of these mediators was observed when M phi s took up senescent post-apoptotic eosinophils that had been cultured long enough to lose plasma membrane integrity. The data indicate that the nonphlogistic alpha v beta 3/CD36/thrombospondin macrophage recognition mechanism is available for clearance of intact senescent eosinophils undergoing apoptosis. Furthermore, our findings suggest that, by contrast, phagocytosis of post-apoptotic eosinophils may elicit undesirable pro-inflammatory responses.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bai Y., Durbin H., Hogg N. Monoclonal antibodies specific for platelet glycoproteins react with human monocytes. Blood. 1984 Jul;64(1):139–146. [PubMed] [Google Scholar]
- Davies J., Warwick J., Totty N., Philp R., Helfrich M., Horton M. The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol. 1989 Oct;109(4 Pt 1):1817–1826. doi: 10.1083/jcb.109.4.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dini L., Autuori F., Lentini A., Oliverio S., Piacentini M. The clearance of apoptotic cells in the liver is mediated by the asialoglycoprotein receptor. FEBS Lett. 1992 Jan 20;296(2):174–178. doi: 10.1016/0014-5793(92)80373-o. [DOI] [PubMed] [Google Scholar]
- Dixit V. M., Haverstick D. M., O'Rourke K. M., Hennessy S. W., Grant G. A., Santoro S. A., Frazier W. A. A monoclonal antibody against human thrombospondin inhibits platelet aggregation. Proc Natl Acad Sci U S A. 1985 May;82(10):3472–3476. doi: 10.1073/pnas.82.10.3472. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis R. E., Yuan J. Y., Horvitz H. R. Mechanisms and functions of cell death. Annu Rev Cell Biol. 1991;7:663–698. doi: 10.1146/annurev.cb.07.110191.003311. [DOI] [PubMed] [Google Scholar]
- Fadok V. A., Savill J. S., Haslett C., Bratton D. L., Doherty D. E., Campbell P. A., Henson P. M. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol. 1992 Dec 15;149(12):4029–4035. [PubMed] [Google Scholar]
- Fadok V. A., Voelker D. R., Campbell P. A., Cohen J. J., Bratton D. L., Henson P. M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992 Apr 1;148(7):2207–2216. [PubMed] [Google Scholar]
- Filley W. V., Holley K. E., Kephart G. M., Gleich G. J. Identification by immunofluorescence of eosinophil granule major basic protein in lung tissues of patients with bronchial asthma. Lancet. 1982 Jul 3;2(8288):11–16. doi: 10.1016/s0140-6736(82)91152-7. [DOI] [PubMed] [Google Scholar]
- Flora P. K., Gregory C. D. Recognition of apoptotic cells by human macrophages: inhibition by a monocyte/macrophage-specific monoclonal antibody. Eur J Immunol. 1994 Nov;24(11):2625–2632. doi: 10.1002/eji.1830241109. [DOI] [PubMed] [Google Scholar]
- Fuller R. W., Kelsey C. R., Cole P. J., Dollery C. T., MacDermot J. Dexamethasone inhibits the production of thromboxane B2 and leukotriene B4 by human alveolar and peritoneal macrophages in culture. Clin Sci (Lond) 1984 Dec;67(6):653–656. doi: 10.1042/cs0670653. [DOI] [PubMed] [Google Scholar]
- Gleich G. J., Adolphson C. R. The eosinophilic leukocyte: structure and function. Adv Immunol. 1986;39:177–253. doi: 10.1016/s0065-2776(08)60351-x. [DOI] [PubMed] [Google Scholar]
- Grigg J. M., Savill J. S., Sarraf C., Haslett C., Silverman M. Neutrophil apoptosis and clearance from neonatal lungs. Lancet. 1991 Sep 21;338(8769):720–722. doi: 10.1016/0140-6736(91)91443-x. [DOI] [PubMed] [Google Scholar]
- Hall S. E., Savill J. S., Henson P. M., Haslett C. Apoptotic neutrophils are phagocytosed by fibroblasts with participation of the fibroblast vitronectin receptor and involvement of a mannose/fucose-specific lectin. J Immunol. 1994 Oct 1;153(7):3218–3227. [PubMed] [Google Scholar]
- Haslett C., Guthrie L. A., Kopaniak M. M., Johnston R. B., Jr, Henson P. M. Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol. 1985 Apr;119(1):101–110. [PMC free article] [PubMed] [Google Scholar]
- Hogg N., MacDonald S., Slusarenko M., Beverley P. C. Monoclonal antibodies specific for human monocytes, granulocytes and endothelium. Immunology. 1984 Dec;53(4):753–767. [PMC free article] [PubMed] [Google Scholar]
- Inaba K., Inaba M., Kinashi T., Tashiro K., Witmer-Pack M., Crowley M., Kaplan G., Valinsky J., Romani N., Ikehara S. Macrophages phagocytose thymic lymphocytes with productively rearranged T cell receptor alpha and beta genes. J Exp Med. 1988 Dec 1;168(6):2279–2294. doi: 10.1084/jem.168.6.2279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawabori S., Soda K., Perdue M. H., Bienenstock J. The dynamics of intestinal eosinophil depletion in rats treated with dexamethasone. Lab Invest. 1991 Feb;64(2):224–233. [PubMed] [Google Scholar]
- Meagher L. C., Savill J. S., Baker A., Fuller R. W., Haslett C. Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2. J Leukoc Biol. 1992 Sep;52(3):269–273. [PubMed] [Google Scholar]
- Musson R. A. Human serum induces maturation of human monocytes in vitro. Changes in cytolytic activity, intracellular lysosomal enzymes, and nonspecific esterase activity. Am J Pathol. 1983 Jun;111(3):331–340. [PMC free article] [PubMed] [Google Scholar]
- Newman S. L., Henson J. E., Henson P. M. Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. J Exp Med. 1982 Aug 1;156(2):430–442. doi: 10.1084/jem.156.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olsen R. L., Little C. Purification and some properties of myeloperoxidase and eosinophil peroxidase from human blood. Biochem J. 1983 Mar 1;209(3):781–787. doi: 10.1042/bj2090781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owen W. F., Jr, Soberman R. J., Yoshimoto T., Sheffer A. L., Lewis R. A., Austen K. F. Synthesis and release of leukotriene C4 by human eosinophils. J Immunol. 1987 Jan 15;138(2):532–538. [PubMed] [Google Scholar]
- Savill J. S., Henson P. M., Haslett C. Phagocytosis of aged human neutrophils by macrophages is mediated by a novel "charge-sensitive" recognition mechanism. J Clin Invest. 1989 Nov;84(5):1518–1527. doi: 10.1172/JCI114328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Savill J. S., Wyllie A. H., Henson J. E., Walport M. J., Henson P. M., Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest. 1989 Mar;83(3):865–875. doi: 10.1172/JCI113970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Savill J., Dransfield I., Hogg N., Haslett C. Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature. 1990 Jan 11;343(6254):170–173. doi: 10.1038/343170a0. [DOI] [PubMed] [Google Scholar]
- Savill J., Fadok V., Henson P., Haslett C. Phagocyte recognition of cells undergoing apoptosis. Immunol Today. 1993 Mar;14(3):131–136. doi: 10.1016/0167-5699(93)90215-7. [DOI] [PubMed] [Google Scholar]
- Savill J., Hogg N., Ren Y., Haslett C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest. 1992 Oct;90(4):1513–1522. doi: 10.1172/JCI116019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Savill J., Smith J., Sarraf C., Ren Y., Abbott F., Rees A. Glomerular mesangial cells and inflammatory macrophages ingest neutrophils undergoing apoptosis. Kidney Int. 1992 Oct;42(4):924–936. doi: 10.1038/ki.1992.369. [DOI] [PubMed] [Google Scholar]
- Spry C. J., Tai P. C., Barkans J. Tissue localization of human eosinophil cationic proteins in allergic diseases. Int Arch Allergy Appl Immunol. 1985;77(1-2):252–254. doi: 10.1159/000233803. [DOI] [PubMed] [Google Scholar]
- Stern M., Meagher L., Savill J., Haslett C. Apoptosis in human eosinophils. Programmed cell death in the eosinophil leads to phagocytosis by macrophages and is modulated by IL-5. J Immunol. 1992 Jun 1;148(11):3543–3549. [PubMed] [Google Scholar]
- Surh C. D., Sprent J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature. 1994 Nov 3;372(6501):100–103. doi: 10.1038/372100a0. [DOI] [PubMed] [Google Scholar]
- Weinstock J. V., Blum A., Walder J., Walder R. Eosinophils from granulomas in murine schistosomiasis mansoni produce substance P. J Immunol. 1988 Aug 1;141(3):961–966. [PubMed] [Google Scholar]