Human carcinomas variably express the complement inhibitory proteins CD46 (membrane cofactor protein), CD55 (decay-accelerating factor), and CD59 (protectin) (original) (raw)
. 1996 Jul;149(1):129–142.
Abstract
Normal human tissues express membrane-associated complement inhibitory proteins that protect these tissues from damage by autologous complement. To determine whether neoplasms also express these proteins, we examined the distribution of the complement inhibitors decay-accelerating factor (DAF), CD59 (protectin), and membrane cofactor protein in frozen samples of human breast, colon, kidney, and lung carcinomas and in adjacent non-neoplastic tissues, using immunohistochemistry. All samples were also studied for deposition of C3 fragments and activated C5b-9. Differences between normal tissues and the corresponding neoplasms were often observed, with loss or gain of expression of one or more inhibitors. Ductal carcinomas of the breast showed the most variation in phenotype; some tumors expressed only one inhibitor while others expressed different combinations of two or three inhibitors. Colon carcinomas, by contrast, stained intensely for all inhibitors. Renal cell carcinomas had weak to moderate expression of one to three inhibitors, generally DAF and CD59, whereas non-small cell carcinomas of the lung usually expressed CD59 and membrane cofactor protein with variable DAF immunoreactivity. The two small cell carcinomas of the lung showed little or no staining for any inhibitor. Activated C5b-9 deposition was seen adjacent to tumor nests in a minority of carcinomas and showed no correlation with complement inhibitor expression. C3 fragment deposition was minimal. Our results demonstrate that most carcinomas, with the exception of small cell carcinomas of the lung, do express one or more complement inhibitors at a level likely to inhibit complement-mediated cellular damage. Unexpectedly, large quantities of DAF and CD59 were often observed in tumor stroma, with only limited deposition in normal connective tissue. This suggests that carcinomas may supplement the activity of membrane-associated complement inhibitors by release of soluble forms of DAF and CD59 into the surrounding extracellular matrix.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bara S., Lint T. F. The third component of complement (C3) bound to tumor target cells enhances their sensitivity to killing by activated macrophages. J Immunol. 1987 Feb 15;138(4):1303–1309. [PubMed] [Google Scholar]
- Bjørge L., Jensen T. S., Vedeler C. A., Ulvestad E., Kristoffersen E. K., Matre R. Soluble CD59 in pregnancy and infancy. Immunol Lett. 1993 May;36(2):233–233. doi: 10.1016/0165-2478(93)90058-a. [DOI] [PubMed] [Google Scholar]
- Bjørge L., Vedeler C. A., Ulvestad E., Matre R. Expression and function of CD59 on colonic adenocarcinoma cells. Eur J Immunol. 1994 Jul;24(7):1597–1603. doi: 10.1002/eji.1830240722. [DOI] [PubMed] [Google Scholar]
- Brasoveanu L. I., Altomonte M., Fonsatti E., Colizzi F., Coral S., Nicotra M. R., Cattarossi I., Cattelan A., Natali P. G., Maio M. Levels of cell membrane CD59 regulate the extent of complement-mediated lysis of human melanoma cells. Lab Invest. 1996 Jan;74(1):33–42. [PubMed] [Google Scholar]
- Cheung N. K., Walter E. I., Smith-Mensah W. H., Ratnoff W. D., Tykocinski M. L., Medof M. E. Decay-accelerating factor protects human tumor cells from complement-mediated cytotoxicity in vitro. J Clin Invest. 1988 Apr;81(4):1122–1128. doi: 10.1172/JCI113426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho S. W., Oglesby T. J., Hsi B. L., Adams E. M., Atkinson J. P. Characterization of three monoclonal antibodies to membrane co-factor protein (MCP) of the complement system and quantification of MCP by radioassay. Clin Exp Immunol. 1991 Feb;83(2):257–261. doi: 10.1111/j.1365-2249.1991.tb05624.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalmasso A. P. Complement in the pathophysiology and diagnosis of human diseases. Crit Rev Clin Lab Sci. 1986;24(2):123–183. doi: 10.3109/10408368609110272. [DOI] [PubMed] [Google Scholar]
- Davies A., Lachmann P. J. Membrane defence against complement lysis: the structure and biological properties of CD59. Immunol Res. 1993;12(3):258–275. doi: 10.1007/BF02918257. [DOI] [PubMed] [Google Scholar]
- Davies A., Simmons D. L., Hale G., Harrison R. A., Tighe H., Lachmann P. J., Waldmann H. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med. 1989 Sep 1;170(3):637–654. doi: 10.1084/jem.170.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falk R. J., Dalmasso A. P., Kim Y., Tsai C. H., Scheinman J. I., Gewurz H., Michael A. F. Neoantigen of the polymerized ninth component of complement. Characterization of a monoclonal antibody and immunohistochemical localization in renal disease. J Clin Invest. 1983 Aug;72(2):560–573. doi: 10.1172/JCI111004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gee A. P., Boyle M. D. Purging tumor cells from bone marrow by use of antibody and complement: a critical appraisal. J Natl Cancer Inst. 1988 Apr 6;80(3):154–159. doi: 10.1093/jnci/80.3.154. [DOI] [PubMed] [Google Scholar]
- Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
- Irie K., Irie R. F., Morton D. L. Evidence for in vivo reaction of antibody and complement to surface antigens of human cancer cells. Science. 1974 Nov 1;186(4162):454–456. doi: 10.1126/science.186.4162.454. [DOI] [PubMed] [Google Scholar]
- Kumar S., Vinci J. M., Pytel B. A., Baglioni C. Expression of messenger RNAs for complement inhibitors in human tissues and tumors. Cancer Res. 1993 Jan 15;53(2):348–353. [PubMed] [Google Scholar]
- Liszewski M. K., Post T. W., Atkinson J. P. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol. 1991;9:431–455. doi: 10.1146/annurev.iy.09.040191.002243. [DOI] [PubMed] [Google Scholar]
- Loveland B. E., Szokolai K., Johnstone R. W., McKenzie I. F. Coordinate functions of multiple complement regulating molecules, CD46, CD55, and CD59. Transplant Proc. 1994 Jun;26(3):1070–1071. [PubMed] [Google Scholar]
- Lublin D. M., Atkinson J. P. Decay-accelerating factor: biochemistry, molecular biology, and function. Annu Rev Immunol. 1989;7:35–58. doi: 10.1146/annurev.iy.07.040189.000343. [DOI] [PubMed] [Google Scholar]
- Mabry M., Speak J. A., Griffin J. D., Stahel R. A., Bernal S. D. Use of SM-1 monoclonal antibody and human complement in selective killing of small cell carcinoma of the lung. J Clin Invest. 1985 May;75(5):1690–1695. doi: 10.1172/JCI111877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin D. E., Chiu F. J., Gigli I., Müller-Eberhard H. J. Killing of human melanoma cells by the membrane attack complex of human complement as a function of its molecular composition. J Clin Invest. 1987 Jul;80(1):226–233. doi: 10.1172/JCI113052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNearney T., Ballard L., Seya T., Atkinson J. P. Membrane cofactor protein of complement is present on human fibroblast, epithelial, and endothelial cells. J Clin Invest. 1989 Aug;84(2):538–545. doi: 10.1172/JCI114196. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medof M. E., Kinoshita T., Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med. 1984 Nov 1;160(5):1558–1578. doi: 10.1084/jem.160.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medof M. E., Walter E. I., Rutgers J. L., Knowles D. M., Nussenzweig V. Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids. J Exp Med. 1987 Mar 1;165(3):848–864. doi: 10.1084/jem.165.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meri S., Morgan B. P., Davies A., Daniels R. H., Olavesen M. G., Waldmann H., Lachmann P. J. Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology. 1990 Sep;71(1):1–9. [PMC free article] [PubMed] [Google Scholar]
- Morgan B. P., Meri S. Membrane proteins that protect against complement lysis. Springer Semin Immunopathol. 1994;15(4):369–396. doi: 10.1007/BF01837366. [DOI] [PubMed] [Google Scholar]
- Nakano Y., Sugita Y., Ishikawa Y., Choi N. H., Tobe T., Tomita M. Isolation of two forms of decay-accelerating factor (DAF) from human urine. Biochim Biophys Acta. 1991 Jul 8;1074(2):326–330. doi: 10.1016/0304-4165(91)90171-c. [DOI] [PubMed] [Google Scholar]
- Nicholson-Weller A., Burge J., Fearon D. T., Weller P. F., Austen K. F. Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J Immunol. 1982 Jul;129(1):184–189. [PubMed] [Google Scholar]
- Niculescu F., Rus H. G., Retegan M., Vlaicu R. Persistent complement activation on tumor cells in breast cancer. Am J Pathol. 1992 May;140(5):1039–1043. [PMC free article] [PubMed] [Google Scholar]
- Ollert M. W., Frade R., Fiandino A., Panneerselvam M., Petrella E. C., Barel M., Pangburn M. K., Bredehorst R., Vogel C. W. C3-cleaving membrane proteinase. A new complement regulatory protein of human melanoma cells. J Immunol. 1990 May 15;144(10):3862–3867. [PubMed] [Google Scholar]
- Ootaka T., Suzuki M., Sudo K., Sato H., Seino J., Saito T., Yoshinaga K. Histologic localization of terminal complement complexes in renal diseases. An immunohistochemical study. Am J Clin Pathol. 1989 Feb;91(2):144–151. doi: 10.1093/ajcp/91.2.144. [DOI] [PubMed] [Google Scholar]
- Perlmann H., Perlmann P., Schreiber R. D., Müller-Eberhard H. J. Interaction of target cell-bound C3bi and C3d with human lymphocyte receptors. Enhancement of antibody-mediated cellular cytotoxicity. J Exp Med. 1981 Jun 1;153(6):1592–1603. doi: 10.1084/jem.153.6.1592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramos O. F., Nilsson B., Nilsson K., Eggertsen G., Yefenof E., Klein E. Elevated NK-mediated lysis of Raji and Daudi cells carrying fixed iC3b fragments. Cell Immunol. 1989 Apr 1;119(2):459–469. doi: 10.1016/0008-8749(89)90258-x. [DOI] [PubMed] [Google Scholar]
- Rollins S. A., Sims P. J. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9. J Immunol. 1990 May 1;144(9):3478–3483. [PubMed] [Google Scholar]
- Rooney I. A., Morgan B. P. Characterization of the membrane attack complex inhibitory protein CD59 antigen on human amniotic cells and in amniotic fluid. Immunology. 1992 Aug;76(4):541–547. [PMC free article] [PubMed] [Google Scholar]
- Rosse W. F. Phosphatidylinositol-linked proteins and paroxysmal nocturnal hemoglobinuria. Blood. 1990 Apr 15;75(8):1595–1601. [PubMed] [Google Scholar]
- Sakuma T., Kodama K., Hara T., Eshita Y., Shibata N., Matsumoto M., Seya T., Mori Y. Levels of complement regulatory molecules in lung cancer: disappearance of the D17 epitope of CD55 in small-cell carcinoma. Jpn J Cancer Res. 1993 Jul;84(7):753–759. doi: 10.1111/j.1349-7006.1993.tb02040.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sayama K., Shiraishi S., Miki Y. Distribution of complement regulators (CD46, CD55 and CD59) in skin appendages, and in benign and malignant skin neoplasms. Br J Dermatol. 1992 Jul;127(1):1–4. doi: 10.1111/j.1365-2133.1992.tb14814.x. [DOI] [PubMed] [Google Scholar]
- Schönermark S., Rauterberg E. W., Shin M. L., Löke S., Roelcke D., Hänsch G. M. Homologous species restriction in lysis of human erythrocytes: a membrane-derived protein with C8-binding capacity functions as an inhibitor. J Immunol. 1986 Mar 1;136(5):1772–1776. [PubMed] [Google Scholar]
- Seya T., Hara T., Matsumoto M., Sugita Y., Akedo H. Complement-mediated tumor cell damage induced by antibodies against membrane cofactor protein (MCP, CD46). J Exp Med. 1990 Dec 1;172(6):1673–1680. doi: 10.1084/jem.172.6.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seya T., Turner J. R., Atkinson J. P. Purification and characterization of a membrane protein (gp45-70) that is a cofactor for cleavage of C3b and C4b. J Exp Med. 1986 Apr 1;163(4):837–855. doi: 10.1084/jem.163.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sugita Y., Tobe T., Oda E., Tomita M., Yasukawa K., Yamaji N., Takemoto T., Furuichi K., Takayama M., Yano S. Molecular cloning and characterization of MACIF, an inhibitor of membrane channel formation of complement. J Biochem. 1989 Oct;106(4):555–557. doi: 10.1093/oxfordjournals.jbchem.a122893. [DOI] [PubMed] [Google Scholar]
- Terachi T., Stanescu G., Pontes J. E., Medof M. E., Caulfield M. J. Coexistence of autologous antibodies and decay-accelerating factor, an inhibitor of complement, on human renal tumor cells. Cancer Res. 1991 May 15;51(10):2521–2523. [PubMed] [Google Scholar]
- Yamakawa M., Yamada K., Tsuge T., Ohrui H., Ogata T., Dobashi M., Imai Y. Protection of thyroid cancer cells by complement-regulatory factors. Cancer. 1994 Jun 1;73(11):2808–2817. doi: 10.1002/1097-0142(19940601)73:11<2808::aid-cncr2820731125>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
- Zalman L. S., Wood L. M., Müller-Eberhard H. J. Isolation of a human erythrocyte membrane protein capable of inhibiting expression of homologous complement transmembrane channels. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6975–6979. doi: 10.1073/pnas.83.18.6975. [DOI] [PMC free article] [PubMed] [Google Scholar]