Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation (original) (raw)

Abstract

In mdx mice, the dystrophin gene of the X chromosome is defective and, as a result, immunoreactive dystrophin is undetectable in all muscle fibers of all animals of this highly inbred strain. This study showed that implantation of suspensions of clonal cultures of normal human myoblasts into different regions of quadriceps muscles of 6-to-10-day-old mdx mice or 60-day-old mdx mice (whose muscles have been crushed 4 days before implantation) results in the appearance of scattered fiber segments containing microscopically demonstrable immunoreactive dystrophin. In the animals that received the normal myoblast implantation in the prenecrotic stage of the disease (6 to 10 days of age), the dystrophin-positive fiber segments (demonstrated at ages 35, 45, and 60 days) escaped necrosis. This was determined by the absence of the characteristic chains of central nuclei, a reliable marker of prior necrosis in mdx muscle fibers. By heavy labeling of the nuclear DNA of the transplantable human myoblasts with H3-thymidine during culturing, and by sequential performance of an immunocytochemical staining for dystrophin and autoradiography on the same sections, some dystrophin-positive fiber segments were shown to contain radiolabeled myonuclei. It was concluded that nondystrophic myoblasts fused with host muscle fibers to form mosaic muscle fibers in which the normal dystrophin gene of the implanted myoblasts was expressed. This approach may be employed for the mitigation of the deleterious consequences of a gene defect in recessively inherited human muscle diseases such as Duchenne dystrophy.

27

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arahata K., Ishiura S., Ishiguro T., Tsukahara T., Suhara Y., Eguchi C., Ishihara T., Nonaka I., Ozawa E., Sugita H. Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide. Nature. 1988 Jun 30;333(6176):861–863. doi: 10.1038/333861a0. [DOI] [PubMed] [Google Scholar]
  2. Bonilla E., Samitt C. E., Miranda A. F., Hays A. P., Salviati G., DiMauro S., Kunkel L. M., Hoffman E. P., Rowland L. P. Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell surface. Cell. 1988 Aug 12;54(4):447–452. doi: 10.1016/0092-8674(88)90065-7. [DOI] [PubMed] [Google Scholar]
  3. Bulfield G., Siller W. G., Wight P. A., Moore K. J. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1189–1192. doi: 10.1073/pnas.81.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chamberlain J. S., Pearlman J. A., Muzny D. M., Gibbs R. A., Ranier J. E., Caskey C. T., Reeves A. A. Expression of the murine Duchenne muscular dystrophy gene in muscle and brain. Science. 1988 Mar 18;239(4846):1416–1418. doi: 10.1126/science.3347839. [DOI] [PubMed] [Google Scholar]
  5. Champaneria S., Holland P. C., Karpati G., Guérin C. Developmental regulation of cell-surface glycoproteins in clonal cultures of human skeletal muscle satellite cells. Biochem Cell Biol. 1989 Feb-Mar;67(2-3):128–136. doi: 10.1139/o89-020. [DOI] [PubMed] [Google Scholar]
  6. Hoffman E. P., Brown R. H., Jr, Kunkel L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987 Dec 24;51(6):919–928. doi: 10.1016/0092-8674(87)90579-4. [DOI] [PubMed] [Google Scholar]
  7. Karpati G., Carpenter S., Prescott S. Small-caliber skeletal muscle fibers do not suffer necrosis in mdx mouse dystrophy. Muscle Nerve. 1988 Aug;11(8):795–803. doi: 10.1002/mus.880110802. [DOI] [PubMed] [Google Scholar]
  8. Koenig M., Monaco A. P., Kunkel L. M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell. 1988 Apr 22;53(2):219–228. doi: 10.1016/0092-8674(88)90383-2. [DOI] [PubMed] [Google Scholar]
  9. Law P. K., Goodwin T. G., Wang M. G. Normal myoblast injections provide genetic treatment for murine dystrophy. Muscle Nerve. 1988 Jun;11(6):525–533. doi: 10.1002/mus.880110602. [DOI] [PubMed] [Google Scholar]
  10. Partridge T. A., Morgan J. E., Coulton G. R., Hoffman E. P., Kunkel L. M. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature. 1989 Jan 12;337(6203):176–179. doi: 10.1038/337176a0. [DOI] [PubMed] [Google Scholar]
  11. Watkins S. C., Hoffman E. P., Slayter H. S., Kunkel L. M. Immunoelectron microscopic localization of dystrophin in myofibres. Nature. 1988 Jun 30;333(6176):863–866. doi: 10.1038/333863a0. [DOI] [PubMed] [Google Scholar]
  12. Watt D. J., Morgan J. E., Partridge T. A. Use of mononuclear precursor cells to insert allogeneic genes into growing mouse muscles. Muscle Nerve. 1984 Nov-Dec;7(9):741–750. doi: 10.1002/mus.880070908. [DOI] [PubMed] [Google Scholar]
  13. YAFFE D., FELDMAN M. THE FORMATION OF HYBRID MULTINUCLEATED MUSCLE FIBERS FROM MYOBLASTS OF DIFFERENT GENETIC ORIGIN. Dev Biol. 1965 Apr;11:300–317. doi: 10.1016/0012-1606(65)90062-x. [DOI] [PubMed] [Google Scholar]
  14. Zubrzycka-Gaarn E. E., Bulman D. E., Karpati G., Burghes A. H., Belfall B., Klamut H. J., Talbot J., Hodges R. S., Ray P. N., Worton R. G. The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature. 1988 Jun 2;333(6172):466–469. doi: 10.1038/333466a0. [DOI] [PubMed] [Google Scholar]