Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules (original) (raw)

. 1988 Oct;133(1):95–109.

Abstract

The tumor microvasculature is hyperpermeable to plasma proteins, but the specific vessels that leak have not been identified. To investigate this question, the extravasation of circulating tracers of varying size was studied by fluorescence, light, and electron microscopy in animals bearing solid transplantable carcinomas. In all five tumors studied, 70 and 150 kD fluoresceinated (FITC)-dextrans and colloidal carbon leaked extensively from the prominent vascular plexus that was induced around individual tumor nodules and at the tumor-host interface. Leaky vessels were mature veins or venules, lined by a continuous endothelium; most had closed interendothelial cell junctions. Immature interface vessels and tumor-penetrating vessels did not leak these macromolecular tracers significantly. Three kD of FITC-dextran leaked from peripherally situated tumor veins or venules but also extravasated from tumor-penetrating vessels and capillaries supplying normal tissues. These data correlate the functional and anatomic heterogeneity of tumor vessels and provide a rationale for the distribution of circulating molecules such as monoclonal antibodies and tumoricidal drugs in solid tumors.

95

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman N. B., Hechmer P. A. Studies on the capillary permeability of experimental liver metastases. Surg Gynecol Obstet. 1978 Jun;146(6):884–888. [PubMed] [Google Scholar]
  2. Brown L. F., Asch B., Harvey V. S., Buchinski B., Dvorak H. F. Fibrinogen influx and accumulation of cross-linked fibrin in mouse carcinomas. Cancer Res. 1988 Apr 1;48(7):1920–1925. [PubMed] [Google Scholar]
  3. Brown L. F., Van de Water L., Harvey V. S., Dvorak H. F. Fibrinogen influx and accumulation of cross-linked fibrin in healing wounds and in tumor stroma. Am J Pathol. 1988 Mar;130(3):455–465. [PMC free article] [PubMed] [Google Scholar]
  4. DEWEY W. C. Vascular-extravascular exchange of II31 plasma proteins in the rat. Am J Physiol. 1959 Aug;197:423–431. doi: 10.1152/ajplegacy.1959.197.2.423. [DOI] [PubMed] [Google Scholar]
  5. Dvorak H. F., Dickersin G. R., Dvorak A. M., Manseau E. J., Pyne K. Human breast carcinoma: fibrin deposits and desmoplasia. Inflammatory cell type and distribution. Microvasculature and infarction. J Natl Cancer Inst. 1981 Aug;67(2):335–345. [PubMed] [Google Scholar]
  6. Dvorak H. F., Harvey V. S., McDonagh J. Quantitation of fibrinogen influx and fibrin deposition and turnover in line 1 and line 10 guinea pig carcinomas. Cancer Res. 1984 Aug;44(8):3348–3354. [PubMed] [Google Scholar]
  7. Dvorak H. F., Orenstein N. S., Carvalho A. C., Churchill W. H., Dvorak A. M., Galli S. J., Feder J., Bitzer A. M., Rypysc J., Giovinco P. Induction of a fibrin-gel investment: an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. J Immunol. 1979 Jan;122(1):166–174. [PubMed] [Google Scholar]
  8. Dvorak H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986 Dec 25;315(26):1650–1659. doi: 10.1056/NEJM198612253152606. [DOI] [PubMed] [Google Scholar]
  9. Fishman A. P. Endothelium: a distributed organ of diverse capabilities. Ann N Y Acad Sci. 1982;401:1–8. doi: 10.1111/j.1749-6632.1982.tb25702.x. [DOI] [PubMed] [Google Scholar]
  10. Folkman J. Tumor angiogenesis. Adv Cancer Res. 1985;43:175–203. doi: 10.1016/s0065-230x(08)60946-x. [DOI] [PubMed] [Google Scholar]
  11. Gerlowski L. E., Jain R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 1986 May;31(3):288–305. doi: 10.1016/0026-2862(86)90018-x. [DOI] [PubMed] [Google Scholar]
  12. Heuser L. S., Miller F. N. Differential macromolecular leakage from the vasculature of tumors. Cancer. 1986 Feb 1;57(3):461–464. doi: 10.1002/1097-0142(19860201)57:3<461::aid-cncr2820570310>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  13. Hilmas D. E., Gillette E. L. Morphometric analyses of the microvasculature of tumors during growth and after x-irradiation. Cancer. 1974 Jan;33(1):103–110. doi: 10.1002/1097-0142(197401)33:1<103::aid-cncr2820330116>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  14. Hori K., Suzuki M., Abe I., Saito S., Sato H. Increase in tumor vascular area due to increased blood flow by angiotensin II in rats. J Natl Cancer Inst. 1985 Feb;74(2):453–459. [PubMed] [Google Scholar]
  15. Hultborn R., Tveit E., Weiss L. Vascular reactivity and perfusion characteristics in 7,12-dimethylbenz(a)anthracene-induced rat mammary neoplasia. Cancer Res. 1983 Jan;43(1):363–366. [PubMed] [Google Scholar]
  16. Kaelin W. G., Jr, Shrivastav S., Shand D. G., Jirtle R. L. Effect of verapamil on malignant tissue blood flow in SMT-2A tumor-bearing rats. Cancer Res. 1982 Oct;42(10):3944–3949. [PubMed] [Google Scholar]
  17. Knierim M., Paweletz N., Finze E. M. Tumor-related reconstitutive vascularization. An ultrastructural study. Anticancer Res. 1986 Nov-Dec;6(6):1305–1315. [PubMed] [Google Scholar]
  18. Lurie A. G., Tatematsu M., Nakatsuka T., Rippey R. M., Ito N. Anatomical and functional vascular changes in hamster cheek pouch during carcinogenesis induced by 7, 12-dimethylbenz(a)anthracene. Cancer Res. 1983 Dec;43(12 Pt 1):5986–5994. [PubMed] [Google Scholar]
  19. Majno G., Shea S. M., Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol. 1969 Sep;42(3):647–672. doi: 10.1083/jcb.42.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Milici A. J., Watrous N. E., Stukenbrok H., Palade G. E. Transcytosis of albumin in capillary endothelium. J Cell Biol. 1987 Dec;105(6 Pt 1):2603–2612. doi: 10.1083/jcb.105.6.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. O'Connor S. W., Bale W. F. Accessibility of circulating immunoglobulin G to the extravascular compartment of solid rat tumors. Cancer Res. 1984 Sep;44(9):3719–3723. [PubMed] [Google Scholar]
  22. Papadimitrou J. M., Woods A. E. Structural and functional characteristics of the microcirculation in neoplasms. J Pathol. 1975 Jun;116(2):65–72. doi: 10.1002/path.1711160202. [DOI] [PubMed] [Google Scholar]
  23. Rogers W., Edlich R. F., Aust J. B. Tumor blood flow. II. Distribution of blood flow in experimental tumors. Angiology. 1969 Jul;20(7):374–387. doi: 10.1177/000331976902000702. [DOI] [PubMed] [Google Scholar]
  24. SCHOEFL G. I. STUDIES ON INFLAMMATION. III. GROWING CAPILLARIES: THEIR STRUCTURE AND PERMEABILITY. Virchows Arch Pathol Anat Physiol Klin Med. 1963 Nov 8;337:97–141. [PubMed] [Google Scholar]
  25. Senger D. R., Galli S. J., Dvorak A. M., Perruzzi C. A., Harvey V. S., Dvorak H. F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983 Feb 25;219(4587):983–985. doi: 10.1126/science.6823562. [DOI] [PubMed] [Google Scholar]
  26. Senger D. R., Perruzzi C. A., Feder J., Dvorak H. F. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res. 1986 Nov;46(11):5629–5632. [PubMed] [Google Scholar]
  27. Song C. W., Levitt S. H. Quantitative study of vascularity in Walker carcinoma 256. Cancer Res. 1971 May;31(5):587–589. [PubMed] [Google Scholar]
  28. Tannock I. F., Steel G. G. Quantitative techniques for study of the anatomy and function of small blood vessels in tumors. J Natl Cancer Inst. 1969 May;42(5):771–782. [PubMed] [Google Scholar]
  29. Thorball N. FITC-dextran tracers in microcirculatory and permeability studies using combined fluorescence stereo microscopy, fluorescence light microscopy and electron microscopy. Histochemistry. 1981;71(2):209–233. doi: 10.1007/BF00507826. [DOI] [PubMed] [Google Scholar]
  30. Tripathi R. C., Tripathi B. J. A new method for light and electron microscopic localization of fluorescein-labelled dextran in ocular tissue using epoxy-resin embedding. Exp Eye Res. 1977 Sep;25(3):259–264. doi: 10.1016/0014-4835(77)90092-6. [DOI] [PubMed] [Google Scholar]
  31. Underwood J. C., Carr I. The ultrastructure and permeability characteristics of the blood vessels of a transplantable rat sarcoma. J Pathol. 1972 Jul;107(3):157–166. doi: 10.1002/path.1711070303. [DOI] [PubMed] [Google Scholar]
  32. Weiss L., Tveit E., Hultborn R. Vascular resistance characteristics of 7,12-dimethylbenz(a)anthracene-induced rat mammary tumors and normal tissues as studied in vitro. Cancer Res. 1985 Jun;45(6):2478–2480. [PubMed] [Google Scholar]