Polyinosinic:polycytidylic acid is a potent activator of endothelial cells (original) (raw)

. 1994 Jul;145(1):137–147.

Abstract

Polyinosinic:polycytidylic acid (poly I:C) is a synthetic double-stranded polyribonucleotide that elicits immune responses analogous to those observed during viral infection. It is also known to modulate the expression of certain autoimmune disorders including diabetes mellitus in the BB rat and NOD mouse. The mechanism underlying these immunomodulatory effects is not known, but it could involve activation of vascular endothelium. We now report that parenteral poly I:C induces rat pancreatic endothelium to hyperexpress intercellular adhesion molecule 1 (CD54). This is accompanied by a perivascular recruitment of mononuclear cells to the exocrine pancreas. Corollary in vitro studies demonstrated that poly I:C is a potent activator of both rat and human endothelial cells in culture. It upregulates endothelial expression of several leukocyte adhesion molecules, stimulates the release of interleukin-6 and interleukin-8, and antagonizes interferon-gamma induction of major histocompatibility complex class II expression. We conclude that poly I:C activates endothelial cells to express surface molecules and cytokines in a pattern classically associated with leukocyte recruitment. These effects may in part contribute to the immunomodulatory effects of poly I:C in animal models of autoimmunity.

137

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama Y., Stevenson G. W., Schlick E., Matsushima K., Miller P. J., Stevenson H. C. Differential ability of human blood monocyte subsets to release various cytokines. J Leukoc Biol. 1985 May;37(5):519–530. doi: 10.1002/jlb.37.5.519. [DOI] [PubMed] [Google Scholar]
  2. Bevilacqua M. P. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol. 1993;11:767–804. doi: 10.1146/annurev.iy.11.040193.004003. [DOI] [PubMed] [Google Scholar]
  3. Bonner-Weir S., Orci L. New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes. 1982 Oct;31(10):883–889. doi: 10.2337/diab.31.10.883. [DOI] [PubMed] [Google Scholar]
  4. Bottazzo G. F., Dean B. M., McNally J. M., MacKay E. H., Swift P. G., Gamble D. R. In situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med. 1985 Aug 8;313(6):353–360. doi: 10.1056/NEJM198508083130604. [DOI] [PubMed] [Google Scholar]
  5. De Clercq E. Interferon induction by polynucleotides, modified polynucleotides, and polycarboxylates. Methods Enzymol. 1981;78(Pt A):227–236. doi: 10.1016/0076-6879(81)78122-9. [DOI] [PubMed] [Google Scholar]
  6. Dean B. M., Walker R., Bone A. J., Baird J. D., Cooke A. Pre-diabetes in the spontaneously diabetic BB/E rat: lymphocyte subpopulations in the pancreatic infiltrate and expression of rat MHC class II molecules in endocrine cells. Diabetologia. 1985 Jul;28(7):464–466. doi: 10.1007/BF00280892. [DOI] [PubMed] [Google Scholar]
  7. Debray-Sachs M., Carnaud C., Boitard C., Cohen H., Gresser I., Bedossa P., Bach J. F. Prevention of diabetes in NOD mice treated with antibody to murine IFN gamma. J Autoimmun. 1991 Apr;4(2):237–248. doi: 10.1016/0896-8411(91)90021-4. [DOI] [PubMed] [Google Scholar]
  8. Doukas J., Mordes J. P. T lymphocytes capable of activating endothelial cells in vitro are present in rats with autoimmune diabetes. J Immunol. 1993 Feb 1;150(3):1036–1046. [PubMed] [Google Scholar]
  9. Doukas J., Pober J. S. IFN-gamma enhances endothelial activation induced by tumor necrosis factor but not IL-1. J Immunol. 1990 Sep 15;145(6):1727–1733. [PubMed] [Google Scholar]
  10. Einhorn S., Eldor A., Vlodavsky I., Fuks Z., Panet A. Production and characterization of interferon from endothelial cells. J Cell Physiol. 1985 Feb;122(2):200–204. doi: 10.1002/jcp.1041220206. [DOI] [PubMed] [Google Scholar]
  11. Ewel C. H., Sobel D. O., Zeligs B. J., Bellanti J. A. Poly I:C accelerates development of diabetes mellitus in diabetes-prone BB rat. Diabetes. 1992 Aug;41(8):1016–1021. doi: 10.2337/diab.41.8.1016. [DOI] [PubMed] [Google Scholar]
  12. Fibbe W. E., Daha M. R., Hiemstra P. S., Duinkerken N., Lurvink E., Ralph P., Altrock B. W., Kaushansky K., Willemze R., Falkenburg J. H. Interleukin 1 and poly(rI).poly(rC) induce production of granulocyte CSF, macrophage CSF, and granulocyte-macrophage CSF by human endothelial cells. Exp Hematol. 1989 Mar;17(3):229–234. [PubMed] [Google Scholar]
  13. Field A. K., Tytell A. A., Lampson G. P., Hilleman M. R. Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1004–1010. doi: 10.1073/pnas.58.3.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fresa K. L., Korngold R., Murasko D. M. Induction of natural killer cell activity of thoracic duct lymphocytes by polyinosinic-polycytidylic acid (poly(I:C)) or interferon. Cell Immunol. 1985 Apr 1;91(2):336–343. doi: 10.1016/0008-8749(85)90231-x. [DOI] [PubMed] [Google Scholar]
  15. Garfinkel S., Haines D. S., Brown S., Wessendorf J., Gillespie D. H., Maciag T. Interleukin-1 alpha mediates an alternative pathway for the antiproliferative action of poly(I.C) on human endothelial cells. J Biol Chem. 1992 Dec 5;267(34):24375–24378. [PubMed] [Google Scholar]
  16. Gimbrone M. A., Jr, Cotran R. S., Folkman J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol. 1974 Mar;60(3):673–684. doi: 10.1083/jcb.60.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hanafusa T., Miyazaki A., Miyagawa J., Tamura S., Inada M., Yamada K., Shinji Y., Katsura H., Yamagata K., Itoh N. Examination of islets in the pancreas biopsy specimens from newly diagnosed type 1 (insulin-dependent) diabetic patients. Diabetologia. 1990 Feb;33(2):105–111. doi: 10.1007/BF00401048. [DOI] [PubMed] [Google Scholar]
  18. Higuchi Y., Herrera P., Muniesa P., Huarte J., Belin D., Ohashi P., Aichele P., Orci L., Vassalli J. D., Vassalli P. Expression of a tumor necrosis factor alpha transgene in murine pancreatic beta cells results in severe and permanent insulitis without evolution towards diabetes. J Exp Med. 1992 Dec 1;176(6):1719–1731. doi: 10.1084/jem.176.6.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hänninen A., Jalkanen S., Salmi M., Toikkanen S., Nikolakaros G., Simell O. Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J Clin Invest. 1992 Nov;90(5):1901–1910. doi: 10.1172/JCI116067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kurt-Jones E. A., Fiers W., Pober J. S. Membrane interleukin 1 induction on human endothelial cells and dermal fibroblasts. J Immunol. 1987 Oct 1;139(7):2317–2324. [PubMed] [Google Scholar]
  21. Lapierre L. A., Fiers W., Pober J. S. Three distinct classes of regulatory cytokines control endothelial cell MHC antigen expression. Interactions with immune gamma interferon differentiate the effects of tumor necrosis factor and lymphotoxin from those of leukocyte alpha and fibroblast beta interferons. J Exp Med. 1988 Mar 1;167(3):794–804. doi: 10.1084/jem.167.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lo D., Reilly C. R., Scott B., Liblau R., McDevitt H. O., Burkly L. C. Antigen-presenting cells in adoptively transferred and spontaneous autoimmune diabetes. Eur J Immunol. 1993 Jul;23(7):1693–1698. doi: 10.1002/eji.1830230744. [DOI] [PubMed] [Google Scholar]
  23. Marui N., Offermann M. K., Swerlick R., Kunsch C., Rosen C. A., Ahmad M., Alexander R. W., Medford R. M. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest. 1993 Oct;92(4):1866–1874. doi: 10.1172/JCI116778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Messadi D. V., Pober J. S., Fiers W., Gimbrone M. A., Jr, Murphy G. F. Induction of an activation antigen on postcapillary venular endothelium in human skin organ culture. J Immunol. 1987 Sep 1;139(5):1557–1562. [PubMed] [Google Scholar]
  25. Munro J. M., Pober J. S., Cotran R. S. Tumor necrosis factor and interferon-gamma induce distinct patterns of endothelial activation and associated leukocyte accumulation in skin of Papio anubis. Am J Pathol. 1989 Jul;135(1):121–133. [PMC free article] [PubMed] [Google Scholar]
  26. Ohashi P. S., Oehen S., Aichele P., Pircher H., Odermatt B., Herrera P., Higuchi Y., Buerki K., Hengartner H., Zinkernagel R. M. Induction of diabetes is influenced by the infectious virus and local expression of MHC class I and tumor necrosis factor-alpha. J Immunol. 1993 Jun 1;150(11):5185–5194. [PubMed] [Google Scholar]
  27. Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
  28. Picarella D. E., Kratz A., Li C. B., Ruddle N. H., Flavell R. A. Transgenic tumor necrosis factor (TNF)-alpha production in pancreatic islets leads to insulitis, not diabetes. Distinct patterns of inflammation in TNF-alpha and TNF-beta transgenic mice. J Immunol. 1993 May 1;150(9):4136–4150. [PubMed] [Google Scholar]
  29. Pober J. S., Bevilacqua M. P., Mendrick D. L., Lapierre L. A., Fiers W., Gimbrone M. A., Jr Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J Immunol. 1986 Mar 1;136(5):1680–1687. [PubMed] [Google Scholar]
  30. Pober J. S., Cotran R. S. Cytokines and endothelial cell biology. Physiol Rev. 1990 Apr;70(2):427–451. doi: 10.1152/physrev.1990.70.2.427. [DOI] [PubMed] [Google Scholar]
  31. Rossini A. A., Mordes J. P., Handler E. S. Speculations on etiology of diabetes mellitus. Tumbler hypothesis. Diabetes. 1988 Mar;37(3):257–261. doi: 10.2337/diab.37.3.257. [DOI] [PubMed] [Google Scholar]
  32. Serreze D. V., Hamaguchi K., Leiter E. H. Immunostimulation circumvents diabetes in NOD/Lt mice. J Autoimmun. 1989 Dec;2(6):759–776. doi: 10.1016/0896-8411(89)90003-6. [DOI] [PubMed] [Google Scholar]
  33. Shreeniwas R., Koga S., Karakurum M., Pinsky D., Kaiser E., Brett J., Wolitzky B. A., Norton C., Plocinski J., Benjamin W. Hypoxia-mediated induction of endothelial cell interleukin-1 alpha. An autocrine mechanism promoting expression of leukocyte adhesion molecules on the vessel surface. J Clin Invest. 1992 Dec;90(6):2333–2339. doi: 10.1172/JCI116122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sobel D. O., Newsome J., Ewel C. H., Bellanti J. A., Abbassi V., Creswell K., Blair O. Poly I:C induces development of diabetes mellitus in BB rat. Diabetes. 1992 Apr;41(4):515–520. doi: 10.2337/diab.41.4.515. [DOI] [PubMed] [Google Scholar]
  35. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  36. Thomas V. A., Woda B. A., Handler E. S., Greiner D. L., Mordes J. P., Rossini A. A. Altered expression of diabetes in BB/Wor rats by exposure to viral pathogens. Diabetes. 1991 Feb;40(2):255–258. doi: 10.2337/diab.40.2.255. [DOI] [PubMed] [Google Scholar]
  37. Turner W., Chan S. P., Chirigos M. A. Stimulation of humoral and cellular antibody formation in mice by poly Ir:Cr. Proc Soc Exp Biol Med. 1970 Jan;133(1):334–338. doi: 10.3181/00379727-133-34469. [DOI] [PubMed] [Google Scholar]
  38. Van Snick J. Interleukin-6: an overview. Annu Rev Immunol. 1990;8:253–278. doi: 10.1146/annurev.iy.08.040190.001345. [DOI] [PubMed] [Google Scholar]
  39. Voyta J. C., Via D. P., Butterfield C. E., Zetter B. R. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol. 1984 Dec;99(6):2034–2040. doi: 10.1083/jcb.99.6.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yang J., Hagan M. K., Offermann M. K. Induction of IL-6 gene expression in Kaposi's sarcoma cells. J Immunol. 1994 Jan 15;152(2):943–955. [PubMed] [Google Scholar]
  41. Yang J., Xu Y., Zhu C., Hagan M. K., Lawley T., Offermann M. K. Regulation of adhesion molecule expression in Kaposi's sarcoma cells. J Immunol. 1994 Jan 1;152(1):361–373. [PubMed] [Google Scholar]
  42. Ziff M. Pathways of mononuclear cell infiltration in rheumatoid synovitis. Rheumatol Int. 1989;9(3-5):97–103. doi: 10.1007/BF00271865. [DOI] [PubMed] [Google Scholar]