Time course of complement activation and inhibitor expression after ischemic injury of rat myocardium (original) (raw)
. 1994 Jun;144(6):1357–1368.
Abstract
Activation of the complement (C) system has been documented in both experimental and clinical studies of myocardial infarction, but the exact time course and mechanisms leading to C activation have remained unclear. Our earlier postmortem study on human beings showed that formation of the membrane attack complex (MAC) of C was associated with loss of CD59 (protectin), an important sarcolemmal regulator of MAC, from the infarcted area. The recent discovery of a rat analogue of CD59 has now allowed the first experimental evaluation of the temporal and spatial relationship between C component deposition and loss of CD59 in acute myocardial infarction (AMI). After ligating the left coronary artery in rats the earliest sign of C activation, focal deposition of C3, was observed at 2 hours. Deposition of the early (C1, C3) and late pathway (C8, C9) components in the AMI lesions occurred at 3 hours. Glycophosphoinositol-anchored rat CD59 was expressed in the sarcolemmal membranes of normal cardiomyocytes. In Western blot analysis extracts of normal rat heart CD59 appeared as a band of 21 kd of molecular weight under nonreducing conditions. Loss of CD59 in the AMI lesions was observed in association with deposits of MAC from day one onward. Our results show that C activation universally accompanies AMI in vivo. It is initiated within 2 hours after coronary artery obstruction via deposition of C3, which may be due to generation of the alternative pathway C3 convertase in the ischemic area. Deposition of C1 and late C components also starts during the early hours (2 to 4 hours) after ischemia. Subsequent loss of the protective CD59 antigen may initiate postinjury clearance of the irreversibly damaged tissue.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Campbell A. K., Daw R. A., Hallett M. B., Luzio J. P. Direct measurement of the increase in intracellular free calcium ion concentration in response to the action of complement. Biochem J. 1981 Feb 15;194(2):551–560. doi: 10.1042/bj1940551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford M. H., Grover F. L., Kolb W. P., McMahan C. A., O'Rourke R. A., McManus L. M., Pinckard R. N. Complement and neutrophil activation in the pathogenesis of ischemic myocardial injury. Circulation. 1988 Dec;78(6):1449–1458. doi: 10.1161/01.cir.78.6.1449. [DOI] [PubMed] [Google Scholar]
- Davies A., Simmons D. L., Hale G., Harrison R. A., Tighe H., Lachmann P. J., Waldmann H. CD59, an LY-6-like protein expressed in human lymphoid cells, regulates the action of the complement membrane attack complex on homologous cells. J Exp Med. 1989 Sep 1;170(3):637–654. doi: 10.1084/jem.170.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreyer W. J., Michael L. H., Nguyen T., Smith C. W., Anderson D. C., Entman M. L., Rossen R. D. Kinetics of C5a release in cardiac lymph of dogs experiencing coronary artery ischemia-reperfusion injury. Circ Res. 1992 Dec;71(6):1518–1524. doi: 10.1161/01.res.71.6.1518. [DOI] [PubMed] [Google Scholar]
- Entman M. L., Michael L., Rossen R. D., Dreyer W. J., Anderson D. C., Taylor A. A., Smith C. W. Inflammation in the course of early myocardial ischemia. FASEB J. 1991 Aug;5(11):2529–2537. doi: 10.1096/fasebj.5.11.1868978. [DOI] [PubMed] [Google Scholar]
- Giclas P. C., Pinckard R. N., Olson M. S. In vitro activation of complement by isolated human heart subcellular membranes. J Immunol. 1979 Jan;122(1):146–151. [PubMed] [Google Scholar]
- Hamilton K. K., Hattori R., Esmon C. T., Sims P. J. Complement proteins C5b-9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J Biol Chem. 1990 Mar 5;265(7):3809–3814. [PubMed] [Google Scholar]
- Heimer G. V., Taylor C. E. Improved mountant for immunofluorescence preparations. J Clin Pathol. 1974 Mar;27(3):254–256. doi: 10.1136/jcp.27.3.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holguin M. H., Fredrick L. R., Bernshaw N. J., Wilcox L. A., Parker C. J. Isolation and characterization of a membrane protein from normal human erythrocytes that inhibits reactive lysis of the erythrocytes of paroxysmal nocturnal hemoglobinuria. J Clin Invest. 1989 Jul;84(1):7–17. doi: 10.1172/JCI114172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes T. R., Piddlesden S. J., Williams J. D., Harrison R. A., Morgan B. P. Isolation and characterization of a membrane protein from rat erythrocytes which inhibits lysis by the membrane attack complex of rat complement. Biochem J. 1992 May 15;284(Pt 1):169–176. doi: 10.1042/bj2840169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito B. R., Roth D. M., Engler R. L. Thromboxane A2 and peptidoleukotrienes contribute to the myocardial ischemia and contractile dysfunction in response to intracoronary infusion of complement C5a in pigs. Circ Res. 1990 Mar;66(3):596–607. doi: 10.1161/01.res.66.3.596. [DOI] [PubMed] [Google Scholar]
- Ito B. R., Schmid-Schönbein G., Engler R. L. Effects of leukocyte activation on myocardial vascular resistance. Blood Cells. 1990;16(1):145–166. [PubMed] [Google Scholar]
- Kajita T., Hugli T. E. C5a-induced neutrophilia. A primary humoral mechanism for recruitment of neutrophils. Am J Pathol. 1990 Aug;137(2):467–477. [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Langlois P. F., Gawryl M. S. Detection of the terminal complement complex in patient plasma following acute myocardial infarction. Atherosclerosis. 1988 Mar;70(1-2):95–105. doi: 10.1016/0021-9150(88)90103-7. [DOI] [PubMed] [Google Scholar]
- Maroko P. R., Carpenter C. B., Chiariello M., Fishbein M. C., Radvany P., Knostman J. D., Hale S. L. Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion. J Clin Invest. 1978 Mar;61(3):661–670. doi: 10.1172/JCI108978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meri S., Morgan B. P., Davies A., Daniels R. H., Olavesen M. G., Waldmann H., Lachmann P. J. Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology. 1990 Sep;71(1):1–9. [PMC free article] [PubMed] [Google Scholar]
- Morgan B. P. Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects. Biochem J. 1989 Nov 15;264(1):1–14. doi: 10.1042/bj2640001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan B. P., Dankert J. R., Esser A. F. Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol. 1987 Jan 1;138(1):246–253. [PubMed] [Google Scholar]
- Morgan B. P., Meri S. Membrane proteins that protect against complement lysis. Springer Semin Immunopathol. 1994;15(4):369–396. doi: 10.1007/BF01837366. [DOI] [PubMed] [Google Scholar]
- Müller-Eberhard H. J. The membrane attack complex of complement. Annu Rev Immunol. 1986;4:503–528. doi: 10.1146/annurev.iy.04.040186.002443. [DOI] [PubMed] [Google Scholar]
- NACHLAS M. M., SHNITKA T. K. Macroscopic identification of early myocardial infarcts by alterations in dehydrogenase activity. Am J Pathol. 1963 Apr;42:379–405. [PMC free article] [PubMed] [Google Scholar]
- Okada H., Nagami Y., Takahashi K., Okada N., Hideshima T., Takizawa H., Kondo J. 20 KDa homologous restriction factor of complement resembles T cell activating protein. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1553–1559. doi: 10.1016/0006-291x(89)90852-8. [DOI] [PubMed] [Google Scholar]
- Pinckard R. N., O'Rourke R. A., Crawford M. H., Grover F. S., McManus L. M., Ghidoni J. J., Storrs S. B., Olson M. S. Complement localization and mediation of ischemic injury in baboon myocardium. J Clin Invest. 1980 Nov;66(5):1050–1056. doi: 10.1172/JCI109933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rollins S. A., Sims P. J. The complement-inhibitory activity of CD59 resides in its capacity to block incorporation of C9 into membrane C5b-9. J Immunol. 1990 May 1;144(9):3478–3483. [PubMed] [Google Scholar]
- Rus H. G., Niculescu F., Vlaicu R. Presence of C5b-9 complement complex and S-protein in human myocardial areas with necrosis and sclerosis. Immunol Lett. 1987 Oct;16(1):15–20. doi: 10.1016/0165-2478(87)90054-x. [DOI] [PubMed] [Google Scholar]
- SELYE H., BAJUSZ E., GRASSO S., MENDELL P. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology. 1960 Oct;11:398–407. doi: 10.1177/000331976001100505. [DOI] [PubMed] [Google Scholar]
- Schäfer H., Mathey D., Hugo F., Bhakdi S. Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol. 1986 Sep 15;137(6):1945–1949. [PubMed] [Google Scholar]
- Sugita Y., Nakano Y., Tomita M. Isolation from human erythrocytes of a new membrane protein which inhibits the formation of complement transmembrane channels. J Biochem. 1988 Oct;104(4):633–637. doi: 10.1093/oxfordjournals.jbchem.a122524. [DOI] [PubMed] [Google Scholar]
- Tikkanen T., Svartström-Fraser M., Tikkanen I., Sariola H., Fyhrquist F. Haemodynamic effects of atrial natriuretic peptide in rats with heart failure. Eur J Pharmacol. 1987 Aug 11;140(2):187–193. doi: 10.1016/0014-2999(87)90804-1. [DOI] [PubMed] [Google Scholar]
- Väkevä A., Laurila P., Meri S. Co-deposition of clusterin with the complement membrane attack complex in myocardial infarction. Immunology. 1993 Oct;80(2):177–182. [PMC free article] [PubMed] [Google Scholar]
- Väkevä A., Laurila P., Meri S. Loss of expression of protectin (CD59) is associated with complement membrane attack complex deposition in myocardial infarction. Lab Invest. 1992 Nov;67(5):608–616. [PubMed] [Google Scholar]
- Väkevä A., Laurila P., Meri S. Regulation of complement membrane attack complex formation in myocardial infarction. Am J Pathol. 1993 Jul;143(1):65–75. [PMC free article] [PubMed] [Google Scholar]
- Weisman H. F., Bartow T., Leppo M. K., Marsh H. C., Jr, Carson G. R., Concino M. F., Boyle M. P., Roux K. H., Weisfeldt M. L., Fearon D. T. Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science. 1990 Jul 13;249(4965):146–151. doi: 10.1126/science.2371562. [DOI] [PubMed] [Google Scholar]
- Yasuda M., Takeuchi K., Hiruma M., Iida H., Tahara A., Itagane H., Toda I., Akioka K., Teragaki M., Oku H. The complement system in ischemic heart disease. Circulation. 1990 Jan;81(1):156–163. doi: 10.1161/01.cir.81.1.156. [DOI] [PubMed] [Google Scholar]