Immunohistochemical analysis of Mcl-1 and Bcl-2 proteins in normal and neoplastic lymph nodes (original) (raw)

. 1994 Sep;145(3):515–525.

Abstract

The Bcl-2 protein blocks programmed cell death and becomes overproduced in many follicular non-Hodgkin's lymphomas as the result of t(14; 18) translocations involving the Bcl-2 gene. Mcl-1 is a recently discovered gene whose encoded protein has significant homology with Bcl-2 but whose function remains unknown. In this study, we compared the in vivo patterns of Bcl-2 and Mcl-1 protein production in normal and neoplastic lymph node biopsies by immunohistochemical means using specific polyclonal antisera. Intracellular Mcl-1 immunoreactivity was located primarily in the cytosol in a punctate pattern and was also seen in association with the nuclear envelope in many cases, similar to the results obtained for Bcl-2, which resides in the outer mitochondrial membrane, nuclear envelope, and endoplasmic reticulum. In 4 of 4 reactive tonsils and 28 of 28 nodes with reactive follicular hyperplasia, reciprocal patterns of Bcl-2 and Mcl-1 protein expression were observed. Bcl-2 immunostaining was highest in mantle zone lymphocytes and absent from most germinal center cells, whereas Mcl-1 immunoreactivity was highest in germinal center lymphocytes and absent from mantle zone lymphocytes. Mcl-1 was also expressed in some interfollicular lymphocytes, particularly those that had the appearance of activated lymphocytes. Similar to the patterns of Bcl-2 and mcl-1 expression seen in reactive nodes, Mcl-1 protein was largely absent from the malignant cells in 2 of 2 mantle cell lymphomas, whereas strong Bcl-2 immunostaining was found in these cells. In contrast to normal nodes, however, the neoplastic follicles of t(14;18) containing follicular non-Hodgkin's lymphomas immunostained positively for both Bcl-2 and Mcl-1 in 24 of 27 cases. Intense immunostaining for Mcl-1 was also observed in Reed-Sternberg cells in 2 of 2 cases of Hodgkin's disease but Bcl-2 immunoreactivity was present at much lower levels. These findings demonstrate that the levels of Mcl-1 and Bcl-2 proteins are differentially regulated in normal and neoplastic cells in lymph nodes and thus suggest different roles for these proteins in the control of cell life and death in these tissues.

515

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baffy G., Miyashita T., Williamson J. R., Reed J. C. Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J Biol Chem. 1993 Mar 25;268(9):6511–6519. [PubMed] [Google Scholar]
  2. Boise L. H., González-García M., Postema C. E., Ding L., Lindsten T., Turka L. A., Mao X., Nuñez G., Thompson C. B. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993 Aug 27;74(4):597–608. doi: 10.1016/0092-8674(93)90508-n. [DOI] [PubMed] [Google Scholar]
  3. Chen-Levy Z., Cleary M. L. Membrane topology of the Bcl-2 proto-oncogenic protein demonstrated in vitro. J Biol Chem. 1990 Mar 25;265(9):4929–4933. [PubMed] [Google Scholar]
  4. Drexler H. G., Leber B. F. The nature of the Hodgkin cell. Report of the First International Symposium on Hodgkin's Lymphoma, Köln, Federal Republic of Germany, October 2-3, 1987. Blut. 1988 Mar;56(3):135–137. doi: 10.1007/BF00320020. [DOI] [PubMed] [Google Scholar]
  5. Dyer M. J., Fischer P., Nacheva E., Labastide W., Karpas A. A new human B-cell non-Hodgkin's lymphoma cell line (Karpas 422) exhibiting both t (14;18) and t(4;11) chromosomal translocations. Blood. 1990 Feb 1;75(3):709–714. [PubMed] [Google Scholar]
  6. Hockenbery D. M., Zutter M., Hickey W., Nahm M., Korsmeyer S. J. BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6961–6965. doi: 10.1073/pnas.88.16.6961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jacobson M. D., Burne J. F., King M. P., Miyashita T., Reed J. C., Raff M. C. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature. 1993 Jan 28;361(6410):365–369. doi: 10.1038/361365a0. [DOI] [PubMed] [Google Scholar]
  8. Kitada S., Miyashita T., Tanaka S., Reed J. C. Investigations of antisense oligonucleotides targeted against bcl-2 RNAs. Antisense Res Dev. 1993 Summer;3(2):157–169. doi: 10.1089/ard.1993.3.157. [DOI] [PubMed] [Google Scholar]
  9. Korsmeyer S. J. Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood. 1992 Aug 15;80(4):879–886. [PubMed] [Google Scholar]
  10. Kozopas K. M., Yang T., Buchan H. L., Zhou P., Craig R. W. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3516–3520. doi: 10.1073/pnas.90.8.3516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krajewski S., Tanaka S., Takayama S., Schibler M. J., Fenton W., Reed J. C. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1993 Oct 1;53(19):4701–4714. [PubMed] [Google Scholar]
  12. Liu Y. J., Cairns J. A., Holder M. J., Abbot S. D., Jansen K. U., Bonnefoy J. Y., Gordon J., MacLennan I. C. Recombinant 25-kDa CD23 and interleukin 1 alpha promote the survival of germinal center B cells: evidence for bifurcation in the development of centrocytes rescued from apoptosis. Eur J Immunol. 1991 May;21(5):1107–1114. doi: 10.1002/eji.1830210504. [DOI] [PubMed] [Google Scholar]
  13. Liu Y. J., Mason D. Y., Johnson G. D., Abbot S., Gregory C. D., Hardie D. L., Gordon J., MacLennan I. C. Germinal center cells express bcl-2 protein after activation by signals which prevent their entry into apoptosis. Eur J Immunol. 1991 Aug;21(8):1905–1910. doi: 10.1002/eji.1830210819. [DOI] [PubMed] [Google Scholar]
  14. MacLennan I. C., Gray D. Antigen-driven selection of virgin and memory B cells. Immunol Rev. 1986 Jun;91:61–85. doi: 10.1111/j.1600-065x.1986.tb01484.x. [DOI] [PubMed] [Google Scholar]
  15. Monaghan P., Robertson D., Amos T. A., Dyer M. J., Mason D. Y., Greaves M. F. Ultrastructural localization of bcl-2 protein. J Histochem Cytochem. 1992 Dec;40(12):1819–1825. doi: 10.1177/40.12.1453000. [DOI] [PubMed] [Google Scholar]
  16. Munakata S., Hendricks J. B. Effect of fixation time and microwave oven heating time on retrieval of the Ki-67 antigen from paraffin-embedded tissue. J Histochem Cytochem. 1993 Aug;41(8):1241–1246. doi: 10.1177/41.8.8331288. [DOI] [PubMed] [Google Scholar]
  17. Ngan B. Y., Chen-Levy Z., Weiss L. M., Warnke R. A., Cleary M. L. Expression in non-Hodgkin's lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N Engl J Med. 1988 Jun 23;318(25):1638–1644. doi: 10.1056/NEJM198806233182502. [DOI] [PubMed] [Google Scholar]
  18. Nuñez G., Hockenbery D., McDonnell T. J., Sorensen C. M., Korsmeyer S. J. Bcl-2 maintains B cell memory. Nature. 1991 Sep 5;353(6339):71–73. doi: 10.1038/353071a0. [DOI] [PubMed] [Google Scholar]
  19. Oltvai Z. N., Milliman C. L., Korsmeyer S. J. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell. 1993 Aug 27;74(4):609–619. doi: 10.1016/0092-8674(93)90509-o. [DOI] [PubMed] [Google Scholar]
  20. Pezzella F., Tse A. G., Cordell J. L., Pulford K. A., Gatter K. C., Mason D. Y. Expression of the bcl-2 oncogene protein is not specific for the 14;18 chromosomal translocation. Am J Pathol. 1990 Aug;137(2):225–232. [PMC free article] [PubMed] [Google Scholar]
  21. Reed J. C. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994 Jan;124(1-2):1–6. doi: 10.1083/jcb.124.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reed J. C., Meister L., Tanaka S., Cuddy M., Yum S., Geyer C., Pleasure D. Differential expression of bcl2 protooncogene in neuroblastoma and other human tumor cell lines of neural origin. Cancer Res. 1991 Dec 15;51(24):6529–6538. [PubMed] [Google Scholar]
  23. Reed J. C., Tsujimoto Y., Epstein S. F., Cuddy M., Slabiak T., Nowell P. C., Croce C. M. Regulation of bcl-2 gene expression in lymphoid cell lines containing normal #18 or t(14;18) chromosomes. Oncogene Res. 1989;4(4):271–282. [PubMed] [Google Scholar]
  24. Rogers S., Wells R., Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986 Oct 17;234(4774):364–368. doi: 10.1126/science.2876518. [DOI] [PubMed] [Google Scholar]
  25. Sato T., Irie S., Krajewski S., Reed J. C. Cloning and sequencing of a cDNA encoding the rat Bcl-2 protein. Gene. 1994 Mar 25;140(2):291–292. doi: 10.1016/0378-1119(94)90561-4. [DOI] [PubMed] [Google Scholar]
  26. Seto M., Jaeger U., Hockett R. D., Graninger W., Bennett S., Goldman P., Korsmeyer S. J. Alternative promoters and exons, somatic mutation and deregulation of the Bcl-2-Ig fusion gene in lymphoma. EMBO J. 1988 Jan;7(1):123–131. doi: 10.1002/j.1460-2075.1988.tb02791.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Strasser A., Whittingham S., Vaux D. L., Bath M. L., Adams J. M., Cory S., Harris A. W. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8661–8665. doi: 10.1073/pnas.88.19.8661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tanaka S., Saito K., Reed J. C. Structure-function analysis of the Bcl-2 oncoprotein. Addition of a heterologous transmembrane domain to portions of the Bcl-2 beta protein restores function as a regulator of cell survival. J Biol Chem. 1993 May 25;268(15):10920–10926. [PubMed] [Google Scholar]
  29. Tsujimoto Y., Cossman J., Jaffe E., Croce C. M. Involvement of the bcl-2 gene in human follicular lymphoma. Science. 1985 Jun 21;228(4706):1440–1443. doi: 10.1126/science.3874430. [DOI] [PubMed] [Google Scholar]
  30. Tsujimoto Y., Croce C. M. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5214–5218. doi: 10.1073/pnas.83.14.5214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zelenetz A. D., Chu G., Galili N., Bangs C. D., Horning S. J., Donlon T. A., Cleary M. L., Levy R. Enhanced detection of the t(14;18) translocation in malignant lymphoma using pulsed-field gel electrophoresis. Blood. 1991 Sep 15;78(6):1552–1560. [PubMed] [Google Scholar]
  32. Zutter M., Hockenbery D., Silverman G. A., Korsmeyer S. J. Immunolocalization of the Bcl-2 protein within hematopoietic neoplasms. Blood. 1991 Aug 15;78(4):1062–1068. [PubMed] [Google Scholar]
  33. de Jong D., Prins F. A., Mason D. Y., Reed J. C., van Ommen G. B., Kluin P. M. Subcellular localization of the bcl-2 protein in malignant and normal lymphoid cells. Cancer Res. 1994 Jan 1;54(1):256–260. [PubMed] [Google Scholar]