Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form (original) (raw)

Abstract

A quantitative study was performed to investigate the requirements for secretion of recombinant soluble and particulate forms of the envelope glycoprotein E of tick-borne encephalitis (TBE) virus. Full-length E and a carboxy terminally truncated anchor-free form were expressed in COS cells in the presence and absence of prM, the precursor of the viral membrane protein M. Formation of a heteromeric complex with prM was found to be necessary for efficient secretion of both forms of E, whereas only low levels of anchor-free E were secreted in the absence of prM. The prM-mediated transport function could also be provided by coexpression of prM and E from separate constructs, but a prM-to-E ratio of greater than 1:1 did not further enhance secretion. Full-length E formed stable intracellular heterodimers with prM and was secreted as a subviral particle, whereas anchor-free E was not associated with particles and formed a less stable complex with prM, suggesting that prM interacts with both the ectodomain and anchor region of E.

Full Text

The Full Text of this article is available as a PDF (381.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison S. L., Mandl C. W., Kunz C., Heinz F. X. Expression of cloned envelope protein genes from the flavivirus tick-borne encephalitis virus in mammalian cells and random mutagenesis by PCR. Virus Genes. 1994 Jul;8(3):187–198. doi: 10.1007/BF01703077. [DOI] [PubMed] [Google Scholar]
  2. Allison S. L., Schalich J., Stiasny K., Mandl C. W., Kunz C., Heinz F. X. Oligomeric rearrangement of tick-borne encephalitis virus envelope proteins induced by an acidic pH. J Virol. 1995 Feb;69(2):695–700. doi: 10.1128/jvi.69.2.695-700.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brandt W. E. From the World Health Organization. Development of dengue and Japanese encephalitis vaccines. J Infect Dis. 1990 Sep;162(3):577–583. doi: 10.1093/infdis/162.3.577. [DOI] [PubMed] [Google Scholar]
  4. Chambers T. J., Hahn C. S., Galler R., Rice C. M. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649–688. doi: 10.1146/annurev.mi.44.100190.003245. [DOI] [PubMed] [Google Scholar]
  5. Delenda C., Frenkiel M. P., Deubel V. Protective efficacy in mice of a secreted form of recombinant dengue-2 virus envelope protein produced in baculovirus infected insect cells. Arch Virol. 1994;139(1-2):197–207. doi: 10.1007/BF01309465. [DOI] [PubMed] [Google Scholar]
  6. Delenda C., Staropoli I., Frenkiel M. P., Cabanié L., Deubel V. Analysis of C-terminally truncated dengue 2 and dengue 3 virus envelope glycoproteins: processing in insect cells and immunogenic properties in mice. J Gen Virol. 1994 Jul;75(Pt 7):1569–1578. doi: 10.1099/0022-1317-75-7-1569. [DOI] [PubMed] [Google Scholar]
  7. Deubel V., Bordier M., Megret F., Gentry M. K., Schlesinger J. J., Girard M. Processing, secretion, and immunoreactivity of carboxy terminally truncated dengue-2 virus envelope proteins expressed in insect cells by recombinant baculoviruses. Virology. 1991 Jan;180(1):442–447. doi: 10.1016/0042-6822(91)90055-g. [DOI] [PubMed] [Google Scholar]
  8. Fonseca B. A., Pincus S., Shope R. E., Paoletti E., Mason P. W. Recombinant vaccinia viruses co-expressing dengue-1 glycoproteins prM and E induce neutralizing antibodies in mice. Vaccine. 1994;12(3):279–285. doi: 10.1016/0264-410x(94)90206-2. [DOI] [PubMed] [Google Scholar]
  9. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. doi: 10.1016/0092-8674(81)90282-8. [DOI] [PubMed] [Google Scholar]
  10. Guirakhoo F., Bolin R. A., Roehrig J. T. The Murray Valley encephalitis virus prM protein confers acid resistance to virus particles and alters the expression of epitopes within the R2 domain of E glycoprotein. Virology. 1992 Dec;191(2):921–931. doi: 10.1016/0042-6822(92)90267-S. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heinz F. X., Stiasny K., Püschner-Auer G., Holzmann H., Allison S. L., Mandl C. W., Kunz C. Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology. 1994 Jan;198(1):109–117. doi: 10.1006/viro.1994.1013. [DOI] [PubMed] [Google Scholar]
  12. Heinz F. X., Tuma W., Guirakhoo F., Kunz C. A model study of the use of monoclonal antibodies in capture enzyme immunoassays for antigen quantification exploiting the epitope map of tick-borne encephalitis virus. J Biol Stand. 1986 Apr;14(2):133–141. doi: 10.1016/0092-1157(86)90032-6. [DOI] [PubMed] [Google Scholar]
  13. Jan L. R., Yang C. S., Henchal L. S., Sumiyoshi H., Summers P. L., Dubois D. R., Lai C. J. Increased immunogenicity and protective efficacy in outbred and inbred mice by strategic carboxyl-terminal truncation of Japanese encephalitis virus envelope glycoprotein. Am J Trop Med Hyg. 1993 Mar;48(3):412–423. doi: 10.4269/ajtmh.1993.48.412. [DOI] [PubMed] [Google Scholar]
  14. Konishi E., Mason P. W. Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. J Virol. 1993 Mar;67(3):1672–1675. doi: 10.1128/jvi.67.3.1672-1675.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Konishi E., Pincus S., Fonseca B. A., Shope R. E., Paoletti E., Mason P. W. Comparison of protective immunity elicited by recombinant vaccinia viruses that synthesize E or NS1 of Japanese encephalitis virus. Virology. 1991 Nov;185(1):401–410. doi: 10.1016/0042-6822(91)90788-d. [DOI] [PubMed] [Google Scholar]
  16. Konishi E., Pincus S., Paoletti E., Laegreid W. W., Shope R. E., Mason P. W. A highly attenuated host range-restricted vaccinia virus strain, NYVAC, encoding the prM, E, and NS1 genes of Japanese encephalitis virus prevents JEV viremia in swine. Virology. 1992 Sep;190(1):454–458. doi: 10.1016/0042-6822(92)91233-k. [DOI] [PubMed] [Google Scholar]
  17. Konishi E., Pincus S., Paoletti E., Shope R. E., Burrage T., Mason P. W. Mice immunized with a subviral particle containing the Japanese encephalitis virus prM/M and E proteins are protected from lethal JEV infection. Virology. 1992 Jun;188(2):714–720. doi: 10.1016/0042-6822(92)90526-u. [DOI] [PubMed] [Google Scholar]
  18. Konishi E., Pincus S., Paoletti E., Shope R. E., Wason P. W. Avipox virus-vectored Japanese encephalitis virus vaccines: use as vaccine candidates in combination with purified subunit immunogens. Vaccine. 1994 May;12(7):633–638. doi: 10.1016/0264-410x(94)90269-0. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  20. Lobigs M. Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6218–6222. doi: 10.1073/pnas.90.13.6218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mandl C. W., Guirakhoo F., Holzmann H., Heinz F. X., Kunz C. Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J Virol. 1989 Feb;63(2):564–571. doi: 10.1128/jvi.63.2.564-571.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mason P. W., Pincus S., Fournier M. J., Mason T. L., Shope R. E., Paoletti E. Japanese encephalitis virus-vaccinia recombinants produce particulate forms of the structural membrane proteins and induce high levels of protection against lethal JEV infection. Virology. 1991 Jan;180(1):294–305. doi: 10.1016/0042-6822(91)90034-9. [DOI] [PubMed] [Google Scholar]
  23. Men R. H., Bray M., Lai C. J. Carboxy-terminally truncated dengue virus envelope glycoproteins expressed on the cell surface and secreted extracellularly exhibit increased immunogenicity in mice. J Virol. 1991 Mar;65(3):1400–1407. doi: 10.1128/jvi.65.3.1400-1407.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pincus S., Mason P. W., Konishi E., Fonseca B. A., Shope R. E., Rice C. M., Paoletti E. Recombinant vaccinia virus producing the prM and E proteins of yellow fever virus protects mice from lethal yellow fever encephalitis. Virology. 1992 Mar;187(1):290–297. doi: 10.1016/0042-6822(92)90317-i. [DOI] [PubMed] [Google Scholar]
  25. Sato T., Takamura C., Yasuda A., Miyamoto M., Kamogawa K., Yasui K. High-level expression of the Japanese encephalitis virus E protein by recombinant vaccinia virus and enhancement of its extracellular release by the NS3 gene product. Virology. 1993 Feb;192(2):483–490. doi: 10.1006/viro.1993.1064. [DOI] [PubMed] [Google Scholar]
  26. Venugopal K., Gould E. A. Towards a new generation of flavivirus vaccines. Vaccine. 1994 Aug;12(11):966–975. doi: 10.1016/0264-410x(94)90329-8. [DOI] [PubMed] [Google Scholar]
  27. Venugopal K., Shiu S. Y., Gould E. A. Recombinant vaccinia virus expressing PrM and E glycoproteins of louping ill virus: induction of partial homologous and heterologous protection in mice. Res Vet Sci. 1994 Sep;57(2):188–193. doi: 10.1016/0034-5288(94)90056-6. [DOI] [PubMed] [Google Scholar]
  28. Wengler G., Wengler G. Cell-associated West Nile flavivirus is covered with E+pre-M protein heterodimers which are destroyed and reorganized by proteolytic cleavage during virus release. J Virol. 1989 Jun;63(6):2521–2526. doi: 10.1128/jvi.63.6.2521-2526.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yamshchikov V. F., Compans R. W. Regulation of the late events in flavivirus protein processing and maturation. Virology. 1993 Jan;192(1):38–51. doi: 10.1006/viro.1993.1006. [DOI] [PubMed] [Google Scholar]