Detection of chromogranin in neuroendocrine cells with a monoclonal antibody (original) (raw)

. 1984 Jun;115(3):458–468.

Abstract

A monoclonal antibody ( LK2H10 ) produced against a human pheochromocytoma reacted immunohistochemically with 126 normal and neoplastic endocrine tissues with secretory granules which were formalin-fixed and paraffin-embedded. Antibody LK2H10 did not react with 46 other endocrine tissues or tumors without secretory granules nor with 113 normal and neoplastic nonendocrine cells and tumors. Tumors with abundant secretory granules showed intense and diffuse staining, and tumors with few granules, such as Merkel cell carcinomas, neuroblastomas, and small cell carcinomas of lung, showed focal staining. Antibody LK2H10 did not react with melanomas, nevi, posterior pituitary, peripheral nerve tissues, or neurons. The target structure of LK2H10 was identified as human chromogranin, of which the major fraction was chromogranin A (mol wt 68,000 daltons). Preabsorption with purified chromogranin A blocked immunoperoxidase staining by LK2H10 in normal adrenal medulla, in the anterior pituitary, and in a pheochromocytoma. Ultrastructural immunohistochemistry with LK2H10 showed that chromogranin was present in cytoplasmic secretory granules. These results indicate that chromogranin is widely distributed in the secretory granules of most polypeptide-producing endocrine tissues, and it is readily detected with the use of monoclonal antibody LK2H10 . The detection of this marker can be very helpful as a diagnostic aid for neuroendocrine cells and tumors.

458

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aunis D., Hesketh J. E., Devilliers G. Immunohistochemical and immunocytochemical localization of myosin, chromogranin A and dopamine-beta-hydroxylase in nerve cells in culture and in adrenal glands. J Neurocytol. 1980 Apr;9(2):255–274. doi: 10.1007/BF01205161. [DOI] [PubMed] [Google Scholar]
  2. Blaschko H., Comline R. S., Schneider F. H., Silver M., Smith A. D. Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature. 1967 Jul 1;215(5096):58–59. doi: 10.1038/215058a0. [DOI] [PubMed] [Google Scholar]
  3. Cohn D. V., Zangerle R., Fischer-Colbrie R., Chu L. L., Elting J. J., Hamilton J. W., Winkler H. Similarity of secretory protein I from parathyroid gland to chromogranin A from adrenal medulla. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6056–6059. doi: 10.1073/pnas.79.19.6056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Da Prada M., Berneis K. H., Pletscher A. Storage of catecholamines in adrenal medullary granules: formation of aggregates with nucleotides. Life Sci I. 1971 Jun 1;10(11):639–646. doi: 10.1016/0024-3205(71)90285-2. [DOI] [PubMed] [Google Scholar]
  5. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  6. Galfre G., Howe S. C., Milstein C., Butcher G. W., Howard J. C. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature. 1977 Apr 7;266(5602):550–552. doi: 10.1038/266550a0. [DOI] [PubMed] [Google Scholar]
  7. Hsu S. M., Raine L., Fanger H. A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am J Clin Pathol. 1981 May;75(5):734–738. doi: 10.1093/ajcp/75.5.734. [DOI] [PubMed] [Google Scholar]
  8. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Le Douarin N. M., Teillet M. A. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 1973 Aug;30(1):31–48. [PubMed] [Google Scholar]
  11. Lloyd R. V., Gikas P. W., Chandler W. F. Prolactin and growth hormone-producing pituitary adenomas. An immunohistochemical and ultrastructural study. Am J Surg Pathol. 1983 Apr;7(3):251–260. doi: 10.1097/00000478-198304000-00004. [DOI] [PubMed] [Google Scholar]
  12. Lloyd R. V., Wilson B. S. Specific endocrine tissue marker defined by a monoclonal antibody. Science. 1983 Nov 11;222(4624):628–630. doi: 10.1126/science.6635661. [DOI] [PubMed] [Google Scholar]
  13. O'Connor D. T. Chromogranin: widespread immunoreactivity in polypeptide hormone producing tissues and in serum. Regul Pept. 1983 Jul;6(3):263–280. doi: 10.1016/0167-0115(83)90145-3. [DOI] [PubMed] [Google Scholar]
  14. O'Connor D. T., Frigon R. P., Sokoloff R. L. Human chromogranin A. Purification and characterization from catecholamine storage vesicles of human pheochromocytoma. Hypertension. 1984 Jan-Feb;6(1):2–12. doi: 10.1161/01.hyp.6.1.2. [DOI] [PubMed] [Google Scholar]
  15. Palmer E. G. Certain cytologic features of the porcine adrenal medulla. Am J Vet Res. 1978 Aug;39(8):1363–1366. [PubMed] [Google Scholar]
  16. Pearse A. G. The diffuse neuroendocrine system and the apud concept: related "endocrine" peptides in brain, intestine, pituitary, placenta, and anuran cutaneous glands. Med Biol. 1977 Jun;55(3):115–125. [PubMed] [Google Scholar]
  17. Pictet R. L., Rall L. B., Phelps P., Rutter W. J. The neural crest and the origin of the insulin-producing and other gastrointestinal hormone-producing cells. Science. 1976 Jan 16;191(4223):191–192. doi: 10.1126/science.1108195. [DOI] [PubMed] [Google Scholar]
  18. Roth J., Bendayan M., Orci L. Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Histochem Cytochem. 1978 Dec;26(12):1074–1081. doi: 10.1177/26.12.366014. [DOI] [PubMed] [Google Scholar]
  19. Schmechel D., Marangos P. J., Brightman M. Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature. 1978 Dec 21;276(5690):834–836. doi: 10.1038/276834a0. [DOI] [PubMed] [Google Scholar]
  20. Sharp R. R., Richards E. P. Molecular mobilities of soluble components in the aqueous phase of chromaffin granules. Biochim Biophys Acta. 1977 Mar 29;497(1):260–271. doi: 10.1016/0304-4165(77)90159-3. [DOI] [PubMed] [Google Scholar]
  21. Tapia F. J., Polak J. M., Barbosa A. J., Bloom S. R., Marangos P. J., Dermody C., Pearse A. G. Neuron-specific enolase is produced by neuroendocrine tumours. Lancet. 1981 Apr 11;1(8224):808–811. doi: 10.1016/s0140-6736(81)92682-9. [DOI] [PubMed] [Google Scholar]
  22. Teitelman G., Joh T. H., Reis D. J. Transformation of catecholaminergic precursors into glucagon (A) cells in mouse embryonic pancreas. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5225–5229. doi: 10.1073/pnas.78.8.5225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Winkler H. The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience. 1976;1(2):65–80. doi: 10.1016/0306-4522(76)90001-4. [DOI] [PubMed] [Google Scholar]