A recombinant adenovirus expressing an Epstein-Barr virus (EBV) target antigen can selectively reactivate rare components of EBV cytotoxic T-lymphocyte memory in vitro (original) (raw)

Abstract

While the bulk of a virus-induced cytotoxic T-lymphocyte (CTL) response may focus on a few immunodominant viral antigens, in certain tumor virus systems the detectability of clones recognizing other, subdominant antigens can assume particular importance. By using the human CTL response to Epstein-Barr virus (EBV) as a model system, here we show that even rare components of virus-specific memory can be selectively reactivated in vitro when the relevant target antigen is expressed in autologous stimulator cells from a recombinant adenovirus (RAd) vector. We generated a replication-deficient adenovirus, RAd-E3C, which in skin fibroblast cultures expressed the EBV nuclear antigen EBNA3C at a 10- to 100-fold-higher level than that naturally present in EBV-transformed lymphoblastoid cell lines (LCLs). Initial experiments with a donor whose polyclonal CTL response to LCL stimulation contained a strong EBNA3C-specific component showed that these CTLs could be efficiently reactivated by in vitro stimulation either with RAd-E3C-infected fibroblasts or with RAd-E3C-infected peripheral blood mononuclear cells. Then we studied donors whose responses to LCL stimulation contained little if any detectable EBNA3C reactivity but were dominated by clones recognizing other EBV target antigens; in vitro stimulation with RAd-E3C-infected peripheral blood mononuclear cells selectively reactivated EBNA3C-specific CTL clones from these individuals, with the epitope specificities of responses subsequently identified at the peptide level. This RAd-based approach could be applied more generally to screen for human CTL responses against any candidate target antigen expressed by tumor cells.

Full Text

The Full Text of this article is available as a PDF (370.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennink J. R., Yewdell J. W. Murine cytotoxic T lymphocyte recognition of individual influenza virus proteins. High frequency of nonresponder MHC class I alleles. J Exp Med. 1988 Nov 1;168(5):1935–1939. doi: 10.1084/jem.168.5.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boon T., Cerottini J. C., Van den Eynde B., van der Bruggen P., Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–365. doi: 10.1146/annurev.iy.12.040194.002005. [DOI] [PubMed] [Google Scholar]
  3. Borysiewicz L. K., Hickling J. K., Graham S., Sinclair J., Cranage M. P., Smith G. L., Sissons J. G. Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate early protein and glycoprotein B expressed by recombinant vaccinia viruses. J Exp Med. 1988 Sep 1;168(3):919–931. doi: 10.1084/jem.168.3.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brooks J. M., Murray R. J., Thomas W. A., Kurilla M. G., Rickinson A. B. Different HLA-B27 subtypes present the same immunodominant Epstein-Barr virus peptide. J Exp Med. 1993 Sep 1;178(3):879–887. doi: 10.1084/jem.178.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burrows S. R., Misko I. S., Sculley T. B., Schmidt C., Moss D. J. An Epstein-Barr virus-specific cytotoxic T-cell epitope present on A- and B-type transformants. J Virol. 1990 Aug;64(8):3974–3976. doi: 10.1128/jvi.64.8.3974-3976.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burrows S. R., Suhrbier A., Khanna R., Moss D. J. Rapid visual assay of cytotoxic T-cell specificity utilizing synthetic peptide induced T-cell-T-cell killing. Immunology. 1992 May;76(1):174–175. [PMC free article] [PubMed] [Google Scholar]
  7. DiBrino M., Parker K. C., Margulies D. H., Shiloach J., Turner R. V., Biddison W. E., Coligan J. E. Identification of the peptide binding motif for HLA-B44, one of the most common HLA-B alleles in the Caucasian population. Biochemistry. 1995 Aug 15;34(32):10130–10138. doi: 10.1021/bi00032a005. [DOI] [PubMed] [Google Scholar]
  8. Doumas B. T. Standards for total serum protein assays--a collaborative study. Clin Chem. 1975 Jul;21(8):1159–1166. [PubMed] [Google Scholar]
  9. Fooks A. R., Schadeck E., Liebert U. G., Dowsett A. B., Rima B. K., Steward M., Stephenson J. R., Wilkinson G. W. High-level expression of the measles virus nucleocapsid protein by using a replication-deficient adenovirus vector: induction of an MHC-1-restricted CTL response and protection in a murine model. Virology. 1995 Jul 10;210(2):456–465. doi: 10.1006/viro.1995.1362. [DOI] [PubMed] [Google Scholar]
  10. Gavioli R., Kurilla M. G., de Campos-Lima P. O., Wallace L. E., Dolcetti R., Murray R. J., Rickinson A. B., Masucci M. G. Multiple HLA A11-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein-Barr virus-encoded nuclear antigen 4. J Virol. 1993 Mar;67(3):1572–1578. doi: 10.1128/jvi.67.3.1572-1578.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Germain R. N. MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell. 1994 Jan 28;76(2):287–299. doi: 10.1016/0092-8674(94)90336-0. [DOI] [PubMed] [Google Scholar]
  12. Haddada H., Lopez M., Martinache C., Ragot T., Abina M. A., Perricaudet M. Efficient adenovirus-mediated gene transfer into human blood monocyte-derived macrophages. Biochem Biophys Res Commun. 1993 Sep 30;195(3):1174–1183. doi: 10.1006/bbrc.1993.2168. [DOI] [PubMed] [Google Scholar]
  13. Hanke T., Graham F. L., Rosenthal K. L., Johnson D. C. Identification of an immunodominant cytotoxic T-lymphocyte recognition site in glycoprotein B of herpes simplex virus by using recombinant adenovirus vectors and synthetic peptides. J Virol. 1991 Mar;65(3):1177–1186. doi: 10.1128/jvi.65.3.1177-1186.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hill A. B., Lee S. P., Haurum J. S., Murray N., Yao Q. Y., Rowe M., Signoret N., Rickinson A. B., McMichael A. J. Class I major histocompatibility complex-restricted cytotoxic T lymphocytes specific for Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell lines against which they were raised. J Exp Med. 1995 Jun 1;181(6):2221–2228. doi: 10.1084/jem.181.6.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hill A., Worth A., Elliott T., Rowland-Jones S., Brooks J., Rickinson A., McMichael A. Characterization of two Epstein-Barr virus epitopes restricted by HLA-B7. Eur J Immunol. 1995 Jan;25(1):18–24. doi: 10.1002/eji.1830250105. [DOI] [PubMed] [Google Scholar]
  16. Horvath J., Weber J. M. Nonpermissivity of human peripheral blood lymphocytes to adenovirus type 2 infection. J Virol. 1988 Jan;62(1):341–345. doi: 10.1128/jvi.62.1.341-345.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huang S., Endo R. I., Nemerow G. R. Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J Virol. 1995 Apr;69(4):2257–2263. doi: 10.1128/jvi.69.4.2257-2263.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jacobs S. C., Stephenson J. R., Wilkinson G. W. High-level expression of the tick-borne encephalitis virus NS1 protein by using an adenovirus-based vector: protection elicited in a murine model. J Virol. 1992 Apr;66(4):2086–2095. doi: 10.1128/jvi.66.4.2086-2095.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jacobs S. C., Stephenson J. R., Wilkinson G. W. Protection elicited by a replication-defective adenovirus vector expressing the tick-borne encephalitis virus non-structural glycoprotein NS1. J Gen Virol. 1994 Sep;75(Pt 9):2399–2402. doi: 10.1099/0022-1317-75-9-2399. [DOI] [PubMed] [Google Scholar]
  20. Khanna R., Burrows S. R., Kurilla M. G., Jacob C. A., Misko I. S., Sculley T. B., Kieff E., Moss D. J. Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med. 1992 Jul 1;176(1):169–176. doi: 10.1084/jem.176.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Khanna R., Jacob C. A., Burrows S. R., Kurilla M. G., Kieff E., Misko I. S., Sculley T. B., Moss D. J. Expression of Epstein-Barr virus nuclear antigens in anti-IgM-stimulated B cells following recombinant vaccinia infection and their recognition by human cytotoxic T cells. Immunology. 1991 Nov;74(3):504–510. [PMC free article] [PubMed] [Google Scholar]
  22. Lee S. P., Thomas W. A., Murray R. J., Khanim F., Kaur S., Young L. S., Rowe M., Kurilla M., Rickinson A. B. HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol. 1993 Dec;67(12):7428–7435. doi: 10.1128/jvi.67.12.7428-7435.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Levitskaya J., Coram M., Levitsky V., Imreh S., Steigerwald-Mullen P. M., Klein G., Kurilla M. G., Masucci M. G. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature. 1995 Jun 22;375(6533):685–688. doi: 10.1038/375685a0. [DOI] [PubMed] [Google Scholar]
  24. Maunders M. J., Petti L., Rowe M. Precipitation of the Epstein-Barr virus protein EBNA 2 by an EBNA 3c-specific monoclonal antibody. J Gen Virol. 1994 Apr;75(Pt 4):769–778. doi: 10.1099/0022-1317-75-4-769. [DOI] [PubMed] [Google Scholar]
  25. McFadden G., Kane K. How DNA viruses perturb functional MHC expression to alter immune recognition. Adv Cancer Res. 1994;63:117–209. doi: 10.1016/s0065-230x(08)60400-5. [DOI] [PubMed] [Google Scholar]
  26. McGrory W. J., Bautista D. S., Graham F. L. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology. 1988 Apr;163(2):614–617. doi: 10.1016/0042-6822(88)90302-9. [DOI] [PubMed] [Google Scholar]
  27. McLaughlin-Taylor E., Pande H., Forman S. J., Tanamachi B., Li C. R., Zaia J. A., Greenberg P. D., Riddell S. R. Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J Med Virol. 1994 May;43(1):103–110. doi: 10.1002/jmv.1890430119. [DOI] [PubMed] [Google Scholar]
  28. Melief C. J., Kast W. M. Potential immunogenicity of oncogene and tumor suppressor gene products. Curr Opin Immunol. 1993 Oct;5(5):709–713. doi: 10.1016/0952-7915(93)90125-c. [DOI] [PubMed] [Google Scholar]
  29. Moss D. J., Misko I. S., Burrows S. R., Burman K., McCarthy R., Sculley T. B. Cytotoxic T-cell clones discriminate between A- and B-type Epstein-Barr virus transformants. Nature. 1988 Feb 25;331(6158):719–721. doi: 10.1038/331719a0. [DOI] [PubMed] [Google Scholar]
  30. Moss D. J., Misko I. S., Sculley T. B., Apolloni A., Khanna R., Burrows S. R. Immune regulation of Epstein-Barr virus (EBV): EBV nuclear antigen as a target for EBV-specific T cell lysis. Springer Semin Immunopathol. 1991;13(2):147–156. doi: 10.1007/BF00201465. [DOI] [PubMed] [Google Scholar]
  31. Murray R. J., Kurilla M. G., Brooks J. M., Thomas W. A., Rowe M., Kieff E., Rickinson A. B. Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med. 1992 Jul 1;176(1):157–168. doi: 10.1084/jem.176.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Petti L., Sample J., Wang F., Kieff E. A fifth Epstein-Barr virus nuclear protein (EBNA3C) is expressed in latently infected growth-transformed lymphocytes. J Virol. 1988 Apr;62(4):1330–1338. doi: 10.1128/jvi.62.4.1330-1338.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rabin H., Hopkins R. F., 3rd, Ruscetti F. W., Neubauer R. H., Brown R. L., Kawakami T. G. Spontaneous release of a factor with properties of T cell growth factor from a continuous line of primate tumor T cells. J Immunol. 1981 Nov;127(5):1852–1856. [PubMed] [Google Scholar]
  34. Ressing M. E., Sette A., Brandt R. M., Ruppert J., Wentworth P. A., Hartman M., Oseroff C., Grey H. M., Melief C. J., Kast W. M. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol. 1995 Jun 1;154(11):5934–5943. [PubMed] [Google Scholar]
  35. Spessot R., Inchley K., Hupel T. M., Bacchetti S. Cloning of the herpes simplex virus ICP4 gene in an adenovirus vector: effects on adenovirus gene expression and replication. Virology. 1989 Feb;168(2):378–387. doi: 10.1016/0042-6822(89)90279-1. [DOI] [PubMed] [Google Scholar]
  36. Townsend A., Bodmer H. Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunol. 1989;7:601–624. doi: 10.1146/annurev.iy.07.040189.003125. [DOI] [PubMed] [Google Scholar]
  37. Wallace L. E., Rowe M., Gaston J. S., Rickinson A. B., Epstein M. A. Cytotoxic T cell recognition of Epstein-Barr virus-infected B cells. III. Establishment of HLA-restricted cytotoxic T cell lines using interleukin 2. Eur J Immunol. 1982 Dec;12(12):1012–1018. doi: 10.1002/eji.1830121206. [DOI] [PubMed] [Google Scholar]
  38. Wilkinson G. W., Akrigg A. Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. Nucleic Acids Res. 1992 May 11;20(9):2233–2239. doi: 10.1093/nar/20.9.2233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. York I. A., Roop C., Andrews D. W., Riddell S. R., Graham F. L., Johnson D. C. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell. 1994 May 20;77(4):525–535. doi: 10.1016/0092-8674(94)90215-1. [DOI] [PubMed] [Google Scholar]
  40. zur Hausen H. Human papillomaviruses in the pathogenesis of anogenital cancer. Virology. 1991 Sep;184(1):9–13. doi: 10.1016/0042-6822(91)90816-t. [DOI] [PubMed] [Google Scholar]