An African swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene (original) (raw)

Abstract

We described previously an African swine fever virus (ASFV) open reading frame, 23-NL, in the African isolate Malawi Lil 20/1 whose product shared significant similarity in a carboxyl-terminal domain with those of a mouse myeloid differentiation primary response gene, MyD116, and the herpes simplex virus neurovirulence-associated gene, ICP34.5 (M. D. Sussman, Z. Lu, G. Kutish, C. L. Afonso, P. Roberts, and D. L. Rock, J. Virol. 66:5586-5589, 1992). The similarity of 23-NL to these genes suggested that this gene may function in some aspect of ASFV virulence and/or host range. Sequence analysis of additional pathogenic viral isolates demonstrates that this gene is highly conserved among diverse ASFV isolates and that the gene product exists in either a long (184 amino acids as in 23-NL) or a short form (70 to 72 amino acids in other examined ASFV isolates). The short form of the gene, NL-S, encodes the complete highly conserved, hydrophilic, carboxyl-terminal domain of 56 amino acids common to 23-NL, MyD116, and ICP34.5. Recombinant NL-S gene deletion mutants and their revertants were constructed from the pathogenic ASFV isolate E70 and an E70 monkey cell culture-adapted virus, MS44, to study gene function. Although deletion of NL-S did not affect viral growth in primary swine macrophages or Vero cell cultures in vitro, the null mutant, E70/43, exhibited a marked reduction in pig virulence. In contrast to revertant or parental E70 where mortality was 100%, all E70/43-infected animals survived infection. With the exception of a transient fever response, E70/43-infected animals remained clinically normal and exhibited a 1,000-fold reduction in both mean and maximum viremia titers. All convalescent E70/43-infected animals survived infection when challenged with parental E70 at 30 days postinfection. These data indicate that the highly conserved NL-S gene of ASFV, while nonessential for growth in swine macrophages in vitro, is a significant viral virulence factor and may function as a host range gene.

Full Text

The Full Text of this article is available as a PDF (284.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolovan C. A., Sawtell N. M., Thompson R. L. ICP34.5 mutants of herpes simplex virus type 1 strain 17syn+ are attenuated for neurovirulence in mice and for replication in confluent primary mouse embryo cell cultures. J Virol. 1994 Jan;68(1):48–55. doi: 10.1128/jvi.68.1.48-55.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chou J., Kern E. R., Whitley R. J., Roizman B. Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science. 1990 Nov 30;250(4985):1262–1266. doi: 10.1126/science.2173860. [DOI] [PubMed] [Google Scholar]
  3. Chou J., Roizman B. Herpes simplex virus 1 gamma(1)34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5247–5251. doi: 10.1073/pnas.91.12.5247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chou J., Roizman B. The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3266–3270. doi: 10.1073/pnas.89.8.3266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chou J., Roizman B. The herpes simplex virus 1 gene for ICP34.5, which maps in inverted repeats, is conserved in several limited-passage isolates but not in strain 17syn+. J Virol. 1990 Mar;64(3):1014–1020. doi: 10.1128/jvi.64.3.1014-1020.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colgrove G. S., Haelterman E. O., Coggins L. Pathogenesis of African swine fever in young pigs. Am J Vet Res. 1969 Aug;30(8):1343–1359. [PubMed] [Google Scholar]
  7. Fornace A. J., Jr, Nebert D. W., Hollander M. C., Luethy J. D., Papathanasiou M., Fargnoli J., Holbrook N. J. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol. 1989 Oct;9(10):4196–4203. doi: 10.1128/mcb.9.10.4196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Genovesi E. V., Villinger F., Gerstner D. J., Whyard T. C., Knudsen R. C. Effect of macrophage-specific colony-stimulating factor (CSF-1) on swine monocyte/macrophage susceptibility to in vitro infection by African swine fever virus. Vet Microbiol. 1990 Nov;25(2-3):153–176. doi: 10.1016/0378-1135(90)90074-6. [DOI] [PubMed] [Google Scholar]
  9. Hall R. L., Moyer R. W. Identification, cloning, and sequencing of a fragment of Amsacta moorei entomopoxvirus DNA containing the spheroidin gene and three vaccinia virus-related open reading frames. J Virol. 1991 Dec;65(12):6516–6527. doi: 10.1128/jvi.65.12.6516-6527.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamdy F. M., Dardiri A. H. Clinical and immunologic responses of pigs to African swine fever virus isolated from the Western Hemisphere. Am J Vet Res. 1984 Apr;45(4):711–714. [PubMed] [Google Scholar]
  11. He B., Chou J., Liebermann D. A., Hoffman B., Roizman B. The carboxyl terminus of the murine MyD116 gene substitutes for the corresponding domain of the gamma(1)34.5 gene of herpes simplex virus to preclude the premature shutoff of total protein synthesis in infected human cells. J Virol. 1996 Jan;70(1):84–90. doi: 10.1128/jvi.70.1.84-90.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hess W. R. African swine fever: a reassessment. Adv Vet Sci Comp Med. 1981;25:39–69. [PubMed] [Google Scholar]
  13. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  14. Hohn B., Collins J. A small cosmid for efficient cloning of large DNA fragments. Gene. 1980 Nov;11(3-4):291–298. doi: 10.1016/0378-1119(80)90069-4. [DOI] [PubMed] [Google Scholar]
  15. Knudsen R. C., Genovesi E. V., Whyard T. C. In vitro immune serum-mediated protection of pig monocytes against African swine fever virus. Am J Vet Res. 1987 Jul;48(7):1067–1071. [PubMed] [Google Scholar]
  16. Konno S., Taylor W. D., Dardiri A. H. Acute African swine fever. Proliferative phase in lymphoreticular tissue and the reticuloendothelial system. Cornell Vet. 1971 Jan;61(1):71–84. [PubMed] [Google Scholar]
  17. Konno S., Taylor W. D., Hess W. R., Heuschele W. P. Liver pathology in African swine fever. Cornell Vet. 1971 Jan;61(1):125–150. [PubMed] [Google Scholar]
  18. Lord K. A., Hoffman-Liebermann B., Liebermann D. A. Complexity of the immediate early response of myeloid cells to terminal differentiation and growth arrest includes ICAM-1, Jun-B and histone variants. Oncogene. 1990 Mar;5(3):387–396. [PubMed] [Google Scholar]
  19. Lord K. A., Hoffman-Liebermann B., Liebermann D. A. Sequence of MyD116 cDNA: a novel myeloid differentiation primary response gene induced by IL6. Nucleic Acids Res. 1990 May 11;18(9):2823–2823. doi: 10.1093/nar/18.9.2823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McGeoch D. J., Barnett B. C. Neurovirulence factor. Nature. 1991 Oct 17;353(6345):609–609. doi: 10.1038/353609b0. [DOI] [PubMed] [Google Scholar]
  21. Mebus C. A. African swine fever. Adv Virus Res. 1988;35:251–269. doi: 10.1016/s0065-3527(08)60714-9. [DOI] [PubMed] [Google Scholar]
  22. Moulton J., Coggins L. Comparison of lesions in acute and chronic African swine fever. Cornell Vet. 1968 Jul;58(3):364–388. [PubMed] [Google Scholar]
  23. Onisk D. V., Borca M. V., Kutish G., Kramer E., Irusta P., Rock D. L. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology. 1994 Jan;198(1):350–354. doi: 10.1006/viro.1994.1040. [DOI] [PubMed] [Google Scholar]
  24. Parker J., Plowright W., Pierce M. A. The epizootiology of African swine fever in Africa. Vet Rec. 1969 Dec 13;85(24):668–674. [PubMed] [Google Scholar]
  25. Pearson W. R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1990;183:63–98. doi: 10.1016/0076-6879(90)83007-v. [DOI] [PubMed] [Google Scholar]
  26. Plowright W., Parker J., Peirce M. A. African swine fever virus in ticks (Ornithodoros moubata, murray) collected from animal burrows in Tanzania. Nature. 1969 Mar 15;221(5185):1071–1073. doi: 10.1038/2211071a0. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Staden R. An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Res. 1982 May 11;10(9):2951–2961. doi: 10.1093/nar/10.9.2951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sussman M. D., Lu Z., Kutish G., Afonso C. L., Roberts P., Rock D. L. Identification of an African swine fever virus gene with similarity to a myeloid differentiation primary response gene and a neurovirulence-associated gene of herpes simplex virus. J Virol. 1992 Sep;66(9):5586–5589. doi: 10.1128/jvi.66.9.5586-5589.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tabarés E., Olivares I., Santurde G., Garcia M. J., Martin E., Carnero M. E. African swine fever virus DNA: deletions and additions during adaptation to growth in monkey kidney cells. Arch Virol. 1987;97(3-4):333–346. doi: 10.1007/BF01314431. [DOI] [PubMed] [Google Scholar]
  31. Taha M. Y., Clements G. B., Brown S. M. The herpes simplex virus type 2 (HG52) variant JH2604 has a 1488 bp deletion which eliminates neurovirulence in mice. J Gen Virol. 1989 Nov;70(Pt 11):3073–3078. doi: 10.1099/0022-1317-70-11-3073. [DOI] [PubMed] [Google Scholar]
  32. Takezaki N., Rzhetsky A., Nei M. Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol. 1995 Sep;12(5):823–833. doi: 10.1093/oxfordjournals.molbev.a040259. [DOI] [PubMed] [Google Scholar]
  33. Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993 May;10(3):512–526. doi: 10.1093/oxfordjournals.molbev.a040023. [DOI] [PubMed] [Google Scholar]
  34. Villeda C. J., Gómez-Villamandos J. C., Williams S. M., Hervás J., Wilkinson P. J., Viñuela E. The role of fibrinolysis in the pathogenesis of the haemorrhagic syndrome produced by virulent isolates of African swine fever virus. Thromb Haemost. 1995 Jan;73(1):112–117. [PubMed] [Google Scholar]
  35. Villeda C. J., Williams S. M., Wilkinson P. J., Viñuela E. Consumption coagulopathy associated with shock in acute African swine fever. Arch Virol. 1993;133(3-4):467–475. doi: 10.1007/BF01313784. [DOI] [PubMed] [Google Scholar]
  36. Villeda C. J., Williams S. M., Wilkinson P. J., Viñuela E. Haemostatic abnormalities in African swine fever a comparison of two virus strains of different virulence (Dominican Republic '78 and Malta '78). Arch Virol. 1993;130(1-2):71–83. doi: 10.1007/BF01318997. [DOI] [PubMed] [Google Scholar]
  37. Viñuela E. African swine fever virus. Curr Top Microbiol Immunol. 1985;116:151–170. doi: 10.1007/978-3-642-70280-8_8. [DOI] [PubMed] [Google Scholar]
  38. Wesley R. D., Pan I. C. African swine fever virus DNA: restriction endonuclease cleavage patterns of wild-type, Vero cell-adapted and plaque-purified virus. J Gen Virol. 1982 Dec;63(2):383–391. doi: 10.1099/0022-1317-63-2-383. [DOI] [PubMed] [Google Scholar]
  39. Whitley R. J., Kern E. R., Chatterjee S., Chou J., Roizman B. Replication, establishment of latency, and induced reactivation of herpes simplex virus gamma 1 34.5 deletion mutants in rodent models. J Clin Invest. 1993 Jun;91(6):2837–2843. doi: 10.1172/JCI116527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yáez R. J., Rodríguez J. M., Nogal M. L., Yuste L., Enríquez C., Rodriguez J. F., Viñuela E. Analysis of the complete nucleotide sequence of African swine fever virus. Virology. 1995 Apr 1;208(1):249–278. doi: 10.1006/viro.1995.1149. [DOI] [PubMed] [Google Scholar]