High male:female ratio of germ-line mutations: an alternative explanation for postulated gestational lethality in males in X-linked dominant disorders (original) (raw)

. 1996 Jun;58(6):1364–1368.

Abstract

In this paper I suggest that a vastly higher rate of de novo mutations in males than in females would explain some, if not most, X-linked dominant disorders associated with a low incidence of affected males. It is the inclusion of the impact of a high ratio of male:female de novo germ-line mutations that makes this model new and unique. Specifically, it is concluded that, if an X-linked disorder results in a dominant phenotype with a significant reproductive disadvantage (genetic lethality), affected females will, in virtually all cases, arise from de novo germ-line mutations inherited from their fathers rather than from their mothers. Under this hypothesis, the absence of affected males is explained by the simple fact that sons do not inherit their X chromosome (normal or abnormal) from their fathers. Because females who are heterozygous for a dominant disorder will be clinically affected and will, in most cases, either be infertile or lack reproductive opportunities, the mutant gene will not be transmitted by them to the next generation (i.e., it will be a genetic lethal). This, not gestational lethality in males, may explain the absence of affected males in most, if not all, of the 13 known X-linked dominant diseases characterized by high ratios of affected female to male individuals. Evidence suggesting that this mechanism could explain the findings in the Rett syndrome is reviewed in detail.

1364

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akesson H. O., Hagberg B., Wahlström J., Engerström I. W. Rett syndrome: a search for gene sources. Am J Med Genet. 1992 Jan 1;42(1):104–108. doi: 10.1002/ajmg.1320420121. [DOI] [PubMed] [Google Scholar]
  2. Barker D., Schafer M., White R. Restriction sites containing CpG show a higher frequency of polymorphism in human DNA. Cell. 1984 Jan;36(1):131–138. doi: 10.1016/0092-8674(84)90081-3. [DOI] [PubMed] [Google Scholar]
  3. Bonaïti-Pellié C., Pelet A., Ogier H., Nelson J. R., Largillière C., Berthelot J., Saudubray J. M., Munnich A. A probable sex difference in mutation rates in ornithine transcarbamylase deficiency. Hum Genet. 1990 Jan;84(2):163–166. doi: 10.1007/BF00208933. [DOI] [PubMed] [Google Scholar]
  4. Bröcker-Vriends A. H., Rosendaal F. R., van Houwelingen J. C., Bakker E., van Ommen G. J., van de Kamp J. J., Briët E. Sex ratio of the mutation frequencies in haemophilia A: coagulation assays and RFLP analysis. J Med Genet. 1991 Oct;28(10):672–680. doi: 10.1136/jmg.28.10.672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Comings D. E. The genetics of Rett syndrome: the consequences of a disorder where every case is a new mutation. Am J Med Genet Suppl. 1986;1:383–388. doi: 10.1002/ajmg.1320250540. [DOI] [PubMed] [Google Scholar]
  6. Cooper D. N., Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988 Feb;78(2):151–155. doi: 10.1007/BF00278187. [DOI] [PubMed] [Google Scholar]
  7. Crow J. F. How much do we know about spontaneous human mutation rates? Environ Mol Mutagen. 1993;21(2):122–129. doi: 10.1002/em.2850210205. [DOI] [PubMed] [Google Scholar]
  8. Drost J. B., Lee W. R. Biological basis of germline mutation: comparisons of spontaneous germline mutation rates among drosophila, mouse, and human. Environ Mol Mutagen. 1995;25 (Suppl 26):48–64. doi: 10.1002/em.2850250609. [DOI] [PubMed] [Google Scholar]
  9. Engerström I. W., Forslund M. Mother and daughter with Rett syndrome. Dev Med Child Neurol. 1992 Nov;34(11):1022–1023. [PubMed] [Google Scholar]
  10. Francke U., Felsenstein J., Gartler S. M., Migeon B. R., Dancis J., Seegmiller J. E., Bakay F., Nyhan W. L. The occurrence of new mutants in the X-linked recessive Lesch-Nyhan disease. Am J Hum Genet. 1976 Mar;28(2):123–137. [PMC free article] [PubMed] [Google Scholar]
  11. Francke U., Felsenstein J., Gartler S. M., Nyhan W. L., Seegmiller J. E. Answer to criticism of Morton and Lalouel. Am J Hum Genet. 1977 May;29(3):307–311. [PMC free article] [PubMed] [Google Scholar]
  12. Hagberg B., Aicardi J., Dias K., Ramos O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Ann Neurol. 1983 Oct;14(4):471–479. doi: 10.1002/ana.410140412. [DOI] [PubMed] [Google Scholar]
  13. Ketterling R. P., Vielhaber E., Bottema C. D., Schaid D. J., Cohen M. P., Sexauer C. L., Sommer S. S. Germ-line origins of mutation in families with hemophilia B: the sex ratio varies with the type of mutation. Am J Hum Genet. 1993 Jan;52(1):152–166. [PMC free article] [PubMed] [Google Scholar]
  14. Kling S., Ljung R., Sjörin E., Montandon J., Green P., Giannelli F., Nilsson I. M. Origin of mutation in sporadic cases of haemophilia-B. Eur J Haematol. 1992 Mar;48(3):142–145. doi: 10.1111/j.1600-0609.1992.tb00585.x. [DOI] [PubMed] [Google Scholar]
  15. Koeberl D. D., Bottema C. D., Ketterling R. P., Bridge P. J., Lillicrap D. P., Sommer S. S. Mutations causing hemophilia B: direct estimate of the underlying rates of spontaneous germ-line transitions, transversions, and deletions in a human gene. Am J Hum Genet. 1990 Aug;47(2):202–217. [PMC free article] [PubMed] [Google Scholar]
  16. Lakich D., Kazazian H. H., Jr, Antonarakis S. E., Gitschier J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet. 1993 Nov;5(3):236–241. doi: 10.1038/ng1193-236. [DOI] [PubMed] [Google Scholar]
  17. Migeon B. R., Dunn M. A., Thomas G., Schmeckpeper B. J., Naidu S. Studies of X inactivation and isodisomy in twins provide further evidence that the X chromosome is not involved in Rett syndrome. Am J Hum Genet. 1995 Mar;56(3):647–653. [PMC free article] [PubMed] [Google Scholar]
  18. Murphy M., Naidu S., Moser H. W. Rett syndrome--observational study of 33 families. Am J Med Genet Suppl. 1986;1:73–76. doi: 10.1002/ajmg.1320250508. [DOI] [PubMed] [Google Scholar]
  19. Naylor J., Brinke A., Hassock S., Green P. M., Giannelli F. Characteristic mRNA abnormality found in half the patients with severe haemophilia A is due to large DNA inversions. Hum Mol Genet. 1993 Nov;2(11):1773–1778. doi: 10.1093/hmg/2.11.1773. [DOI] [PubMed] [Google Scholar]
  20. Palau F., Löfgren A., De Jonghe P., Bort S., Nelis E., Sevilla T., Martin J. J., Vilchez J., Prieto F., Van Broeckhoven C. Origin of the de novo duplication in Charcot-Marie-Tooth disease type 1A: unequal nonsister chromatid exchange during spermatogenesis. Hum Mol Genet. 1993 Dec;2(12):2031–2035. doi: 10.1093/hmg/2.12.2031. [DOI] [PubMed] [Google Scholar]
  21. Rossiter J. P., Young M., Kimberland M. L., Hutter P., Ketterling R. P., Gitschier J., Horst J., Morris M. A., Schaid D. J., de Moerloose P. Factor VIII gene inversions causing severe hemophilia A originate almost exclusively in male germ cells. Hum Mol Genet. 1994 Jul;3(7):1035–1039. doi: 10.1093/hmg/3.7.1035. [DOI] [PubMed] [Google Scholar]
  22. Shimmin L. C., Chang B. H., Li W. H. Male-driven evolution of DNA sequences. Nature. 1993 Apr 22;362(6422):745–747. doi: 10.1038/362745a0. [DOI] [PubMed] [Google Scholar]
  23. Trevathan E., Naidu S. The clinical recognition and differential diagnosis of Rett syndrome. J Child Neurol. 1988;3 (Suppl):S6–16. doi: 10.1177/0883073888003001s03. [DOI] [PubMed] [Google Scholar]
  24. Tuchman M., Matsuda I., Munnich A., Malcolm S., Strautnieks S., Briede T. Proportions of spontaneous mutations in males and females with ornithine transcarbamylase deficiency. Am J Med Genet. 1995 Jan 2;55(1):67–70. doi: 10.1002/ajmg.1320550118. [DOI] [PubMed] [Google Scholar]
  25. Vogel F. A probable sex difference in some mutation rates. Am J Hum Genet. 1977 May;29(3):312–319. [PMC free article] [PubMed] [Google Scholar]
  26. Vogel F., Rathenberg R. Spontaneous mutation in man. Adv Hum Genet. 1975;5:223–318. doi: 10.1007/978-1-4615-9068-2_4. [DOI] [PubMed] [Google Scholar]
  27. Wettke-Schäfer R., Kantner G. X-linked dominant inherited diseases with lethality in hemizygous males. Hum Genet. 1983;64(1):1–23. doi: 10.1007/BF00289472. [DOI] [PubMed] [Google Scholar]
  28. Zoghbi H. Genetic aspects of Rett syndrome. J Child Neurol. 1988;3 (Suppl):S76–S78. doi: 10.1177/0883073888003001s15. [DOI] [PubMed] [Google Scholar]