Interphase cytogenetics reveals a high incidence of aneuploidy and intra-tumour heterogeneity in breast cancer (original) (raw)

Abstract

The occurrence of aberrations involving chromosomes 11 and 17 in malignant tissues of breast cancer patients has not yet been studied systematically. Using fluorescence in situ hybridisation (FISH) with centromere-specific probes, we determined chromosome 11 and 17 status in interphase nuclei from primary and/or metastatic breast cancer cells. In all cancerous specimens obtained from 30 patients, FISH identified cells with clonal chromosomal abnormalities, with aneuploidy rates ranging from 6% to 92% (median 59%). There was a gain of centromeric signals for chromosome 11, most likely corresponding to hyperploidy; aberrations of chromosome 17 in specimens from 26 patients (87%) were hyperploid as well; however, four cases (13%) showed loss of chromosome 17 centromeres. All specimens contained heterogeneous aneuploid cell populations with excessive gain of signals in some cases. The pattern of aneuploidy did not appear to correlate with tumour grade/stage and was comparable in primary tumours and corresponding metastatic axillary lymph nodes, indicative of genetic instability early in tumour development. Screening with a panel of FISH probes may lead to enhanced sensitivity and specificity in detecting malignant cells, as demonstrated in this study with effusions which could not be conclusively interpreted as being malignant by cytological criteria.

51

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baars J. H., De Ruijter J. L., Smedts F., Van Niekerk C. C., Poels L. G., Seldenrijk C. A., Ramaekers F. C. The applicability of a keratin 7 monoclonal antibody in routinely Papanicolaou-stained cytologic specimens for the differential diagnosis of carcinomas. Am J Clin Pathol. 1994 Mar;101(3):257–261. doi: 10.1093/ajcp/101.3.257. [DOI] [PubMed] [Google Scholar]
  2. Bandyk M. G., Zhao L., Troncoso P., Pisters L. L., Palmer J. L., von Eschenbach A. C., Chung L. W., Liang J. C. Trisomy 7: a potential cytogenetic marker of human prostate cancer progression. Genes Chromosomes Cancer. 1994 Jan;9(1):19–27. doi: 10.1002/gcc.2870090105. [DOI] [PubMed] [Google Scholar]
  3. Banks E. R., Jennings C. D., Jacobs S., Davey D. D. Comparative assessment of DNA analysis in effusions by image analysis and flow cytometry. Diagn Cytopathol. 1994;10(1):62–67. doi: 10.1002/dc.2840100116. [DOI] [PubMed] [Google Scholar]
  4. Beerman H., Smit V. T., Kluin P. M., Bonsing B. A., Hermans J., Cornelisse C. J. Flow cytometric analysis of DNA stemline heterogeneity in primary and metastatic breast cancer. Cytometry. 1991;12(2):147–154. doi: 10.1002/cyto.990120208. [DOI] [PubMed] [Google Scholar]
  5. Bentz M., Schröder M., Herz M., Stilgenbauer S., Lichter P., Döhner H. Detection of trisomy 8 on blood smears using fluorescence in situ hybridization. Leukemia. 1993 May;7(5):752–757. [PubMed] [Google Scholar]
  6. Brugger W., Bross K. J., Glatt M., Weber F., Mertelsmann R., Kanz L. Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood. 1994 Feb 1;83(3):636–640. [PubMed] [Google Scholar]
  7. Cajulis R. S., Haines G. K., 3rd, Frias-Hidvegi D., McVary K. Interphase cytogenetics as an adjunct in the cytodiagnosis of urinary bladder carcinoma. A comparative study of cytology, flow cytometry and interphase cytogenetics in bladder washes. Anal Quant Cytol Histol. 1994 Feb;16(1):1–10. [PubMed] [Google Scholar]
  8. Cornelisse C. J., Van Driel-Kulker A. M. DNA image cytometry on machine-selected breast cancer cells and a comparison between flow cytometry and scanning cytophotometry. Cytometry. 1985 Sep;6(5):471–477. doi: 10.1002/cyto.990060512. [DOI] [PubMed] [Google Scholar]
  9. Cremer T., Landegent J., Brückner A., Scholl H. P., Schardin M., Hager H. D., Devilee P., Pearson P., van der Ploeg M. Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum Genet. 1986 Dec;74(4):346–352. doi: 10.1007/BF00280484. [DOI] [PubMed] [Google Scholar]
  10. Devilee P., Cornelisse C. J. Somatic genetic changes in human breast cancer. Biochim Biophys Acta. 1994 Dec 30;1198(2-3):113–130. doi: 10.1016/0304-419x(94)90009-4. [DOI] [PubMed] [Google Scholar]
  11. Devilee P., Thierry R. F., Kievits T., Kolluri R., Hopman A. H., Willard H. F., Pearson P. L., Cornelisse C. J. Detection of chromosome aneuploidy in interphase nuclei from human primary breast tumors using chromosome-specific repetitive DNA probes. Cancer Res. 1988 Oct 15;48(20):5825–5830. [PubMed] [Google Scholar]
  12. Diaz-Arias A. A., Loy T. S., Bickel J. T., Chapman R. K. Utility of BER-EP4 in the diagnosis of adenocarcinoma in effusions: an immunocytochemical study of 232 cases. Diagn Cytopathol. 1993 Oct;9(5):516–521. doi: 10.1002/dc.2840090509. [DOI] [PubMed] [Google Scholar]
  13. Dutrillaux B., Gerbault-Seureau M., Remvikos Y., Zafrani B., Prieur M. Breast cancer genetic evolution: I. Data from cytogenetics and DNA content. Breast Cancer Res Treat. 1991 Nov;19(3):245–255. doi: 10.1007/BF01961161. [DOI] [PubMed] [Google Scholar]
  14. Dutrillaux B., Gerbault-Seureau M., Zafrani B. Characterization of chromosomal anomalies in human breast cancer. A comparison of 30 paradiploid cases with few chromosome changes. Cancer Genet Cytogenet. 1990 Oct 15;49(2):203–217. doi: 10.1016/0165-4608(90)90143-x. [DOI] [PubMed] [Google Scholar]
  15. Eastmond D. A., Pinkel D. Detection of aneuploidy and aneuploidy-inducing agents in human lymphocytes using fluorescence in situ hybridization with chromosome-specific DNA probes. Mutat Res. 1990 Oct;234(5):303–318. doi: 10.1016/0165-1161(90)90041-l. [DOI] [PubMed] [Google Scholar]
  16. Escudier S. M., Pereira-Leahy J. M., Drach J. W., Weier H. U., Goodacre A. M., Cork M. A., Trujillo J. M., Keating M. J., Andreeff M. Fluorescent in situ hybridization and cytogenetic studies of trisomy 12 in chronic lymphocytic leukemia. Blood. 1993 May 15;81(10):2702–2707. [PubMed] [Google Scholar]
  17. Gnant M. F., Blijham G. H., Reiner A., Schemper M., Reynders M., Schutte B., van Asche C., Steger G., Jakesz R. Aneuploidy fraction but not DNA index is important for the prognosis of patients with stage I and II breast cancer--10-year results. Ann Oncol. 1993 Sep;4(8):643–650. doi: 10.1093/oxfordjournals.annonc.a058618. [DOI] [PubMed] [Google Scholar]
  18. Heim S., Mandahl N., Mitelman F. Genetic convergence and divergence in tumor progression. Cancer Res. 1988 Nov 1;48(21):5911–5916. [PubMed] [Google Scholar]
  19. Hopman A. H., Ramaekers F. C., Raap A. K., Beck J. L., Devilee P., van der Ploeg M., Vooijs G. P. In situ hybridization as a tool to study numerical chromosome aberrations in solid bladder tumors. Histochemistry. 1988;89(4):307–316. doi: 10.1007/BF00500631. [DOI] [PubMed] [Google Scholar]
  20. Kallioniemi A., Kallioniemi O. P., Piper J., Tanner M., Stokke T., Chen L., Smith H. S., Pinkel D., Gray J. W., Waldman F. M. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2156–2160. doi: 10.1073/pnas.91.6.2156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kallioniemi O. P., Kallioniemi A., Kurisu W., Thor A., Chen L. C., Smith H. S., Waldman F. M., Pinkel D., Gray J. W. ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5321–5325. doi: 10.1073/pnas.89.12.5321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kibbelaar R. E., Kok F., Dreef E. J., Kleiverda J. K., Cornelisse C. J., Raap A. K., Kluin P. M. Statistical methods in interphase cytogenetics: an experimental approach. Cytometry. 1993 Oct;14(7):716–724. doi: 10.1002/cyto.990140704. [DOI] [PubMed] [Google Scholar]
  23. Kirchweger R., Zeillinger R., Schneeberger C., Speiser P., Louason G., Theillet C. Patterns of allele losses suggest the existence of five distinct regions of LOH on chromosome 17 in breast cancer. Int J Cancer. 1994 Jan 15;56(2):193–199. doi: 10.1002/ijc.2910560208. [DOI] [PubMed] [Google Scholar]
  24. Le Beau M. M. Detecting genetic changes in human tumor cells: have scientists "gone fishing?". Blood. 1993 Apr 15;81(8):1979–1983. [PubMed] [Google Scholar]
  25. Matsumura K., Kallioniemi A., Kallioniemi O., Chen L., Smith H. S., Pinkel D., Gray J., Waldman F. M. Deletion of chromosome 17p loci in breast cancer cells detected by fluorescence in situ hybridization. Cancer Res. 1992 Jun 15;52(12):3474–3477. [PubMed] [Google Scholar]
  26. Micale M. A., Visscher D. W., Gulino S. E., Wolman S. R. Chromosomal aneuploidy in proliferative breast disease. Hum Pathol. 1994 Jan;25(1):29–35. doi: 10.1016/0046-8177(94)90167-8. [DOI] [PubMed] [Google Scholar]
  27. Ménard S., Squicciarini P., Luini A., Sacchini V., Rovini D., Tagliabue E., Veronesi P., Salvadori B., Veronesi U., Colnaghi M. I. Immunodetection of bone marrow micrometastases in breast carcinoma patients and its correlation with primary tumour prognostic features. Br J Cancer. 1994 Jun;69(6):1126–1129. doi: 10.1038/bjc.1994.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pinkel D., Straume T., Gray J. W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986 May;83(9):2934–2938. doi: 10.1073/pnas.83.9.2934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pirc-Danoewinata H., Chott A., Onderka E., Drach J., Schlögl E., Jäger U., Thalhammer F., Nowotny H., Aryee D., Steger G. G. Karyotype and prognosis in non-Hodgkin lymphoma. Leukemia. 1994 Nov;8(11):1929–1939. [PubMed] [Google Scholar]
  30. Rodríguez de Castro F., Molero T., Acosta O., Julià-Serdà G., Caminero J., Cabrera P., Carrillo T. Value of DNA analysis in addition to cytological testing in the diagnosis of malignant pleural effusions. Thorax. 1994 Jul;49(7):692–694. doi: 10.1136/thx.49.7.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shay J. W., Wright W. E., Werbin H. Toward a molecular understanding of human breast cancer: a hypothesis. Breast Cancer Res Treat. 1993;25(1):83–94. doi: 10.1007/BF00662404. [DOI] [PubMed] [Google Scholar]
  32. Takahashi S., Qian J., Brown J. A., Alcaraz A., Bostwick D. G., Lieber M. M., Jenkins R. B. Potential markers of prostate cancer aggressiveness detected by fluorescence in situ hybridization in needle biopsies. Cancer Res. 1994 Jul 1;54(13):3574–3579. [PubMed] [Google Scholar]
  33. Takita K., Sato T., Miyagi M., Watatani M., Akiyama F., Sakamoto G., Kasumi F., Abe R., Nakamura Y. Correlation of loss of alleles on the short arms of chromosomes 11 and 17 with metastasis of primary breast cancer to lymph nodes. Cancer Res. 1992 Jul 15;52(14):3914–3917. [PubMed] [Google Scholar]
  34. Winqvist R., Mannermaa A., Alavaikko M., Blanco G., Taskinen P. J., Kiviniemi H., Newsham I., Cavenee W. Refinement of regional loss of heterozygosity for chromosome 11p15.5 in human breast tumors. Cancer Res. 1993 Oct 1;53(19):4486–4488. [PubMed] [Google Scholar]
  35. Wolman S. R. Fluorescence in situ hybridization: a new tool for the pathologist. Hum Pathol. 1994 Jun;25(6):586–590. doi: 10.1016/0046-8177(94)90223-2. [DOI] [PubMed] [Google Scholar]
  36. Zafrani B., Gerbault-Seureau M., Mosseri V., Dutrillaux B. Cytogenetic study of breast cancer: clinicopathologic significance of homogeneously staining regions in 84 patients. Hum Pathol. 1992 May;23(5):542–547. doi: 10.1016/0046-8177(92)90131-l. [DOI] [PubMed] [Google Scholar]