Enhancement of the anti-tumour effects of the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA) by combination with 5-hydroxytryptamine and bioreductive drugs (original) (raw)

Abstract

The tumour blood flow inhibitor 5,6-dimethylxanthenone-4-acetic acid (DMXAA) causes dramatic haemorrhagic necrosis in murine tumours, but activity is seen only at doses close to the toxic limit. This study investigates two approaches for increasing the therapeutic ratio of DMXAA. The first approach combines DMXAA with a second tumour blood flow inhibitor, 5-hydroxytryptamine (5-HT). Co-administration of 5-HT (700 micromol kg(-1)) to C3H mice caused marked enhancement of DMXAA effects against MDAH-MCa-4 tumours, with dose-modifying factors (DMFs) of >3 for blood flow inhibition (at 4 h), 2.3 for necrosis (at 12 h) and 2.0 for growth delay, without compromising the maximum tolerated dose of DMXAA (90 micromol kg(-1)). The data are consistent with ischaemic injury to the tumour being the major mechanism of anti-tumour activity. The second approach combines DMXAA (+/- 5-HT) with hypoxia-selective bioreductive drugs. Anti-tumour activity of all three bioreductive drugs tested (tirapazamine, CI-1010, SN 23816) was strongly potentiated by DMXAA, suggesting that there is a population of reversibly hypoxic tumour cells after DMXAA treatment. Co-administration of 5-HT further potentiated anti-tumour activity, but also increased host toxicity of tirapazamine and CI-1010 so that little therapeutic benefit was achieved. In contrast, the host toxicity of the dinitrobenzamide mustard SN 23816 was only slightly increased by DMXAA/5-HT, whereas the tumour growth delay at the maximum tolerated dose of SN 23816 was increased from 3.5 to 26.5 days. This study demonstrates that 5-HT and/or bioreductive drugs can improve the therapeutic activity of DMXAA in mice, and that with SN 23816 both approaches can be used together to provide considerably enhanced anti-tumour activity.

439

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams G. E., Stratford I. J. Bioreductive drugs for cancer therapy: the search for tumor specificity. Int J Radiat Oncol Biol Phys. 1994 May 15;29(2):231–238. doi: 10.1016/0360-3016(94)90267-4. [DOI] [PubMed] [Google Scholar]
  2. Baguley B. C., Ching L. M. Immunomodulatory actions of xanthenone anticancer agents. BioDrugs. 1997 Aug;8(2):119–127. doi: 10.2165/00063030-199708020-00005. [DOI] [PubMed] [Google Scholar]
  3. Baguley B. C., Cole G., Thomsen L. L., Li Z. Serotonin involvement in the antitumour and host effects of flavone-8-acetic acid and 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother Pharmacol. 1993;33(1):77–81. doi: 10.1007/BF00686027. [DOI] [PubMed] [Google Scholar]
  4. Baguley B. C., Zhuang L., Kestell P. Increased plasma serotonin following treatment with flavone-8-acetic acid, 5,6-dimethylxanthenone-4-acetic acid, vinblastine, and colchicine: relation to vascular effects. Oncol Res. 1997;9(2):55–60. [PubMed] [Google Scholar]
  5. Bibby M. C., Phillips R. M., Double J. A., Pratesi G. Anti-tumour activity of flavone acetic acid (NSC 347512) in mice--influence of immune status. Br J Cancer. 1991 Jan;63(1):57–62. doi: 10.1038/bjc.1991.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bremner J. C., Adams G. E., Pearson J. K., Sansom J. M., Stratford I. J., Bedwell J., Bown S. G., MacRobert A. J., Phillips D. Increasing the effect of photodynamic therapy on the RIF-1 murine sarcoma, using the bioreductive drugs RSU1069 and RB6145. Br J Cancer. 1992 Dec;66(6):1070–1076. doi: 10.1038/bjc.1992.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown J. M., Koong A. Therapeutic advantage of hypoxic cells in tumors: a theoretical study. J Natl Cancer Inst. 1991 Feb 6;83(3):178–185. doi: 10.1093/jnci/83.3.178. [DOI] [PubMed] [Google Scholar]
  8. Brown J. M., Lemmon M. J. Tumor hypoxia can be exploited to preferentially sensitize tumors to fractionated irradiation. Int J Radiat Oncol Biol Phys. 1991 Mar;20(3):457–461. doi: 10.1016/0360-3016(91)90057-b. [DOI] [PubMed] [Google Scholar]
  9. Brown J. M. SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br J Cancer. 1993 Jun;67(6):1163–1170. doi: 10.1038/bjc.1993.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown S. L., Hunt J. W., Hill R. P. A comparison of the rate of clearance of xenon (133Xe) and pertechnetate ion (99mTcO4-) in murine tumors and normal leg muscles. Int J Rad Appl Instrum B. 1988;15(4):381–390. doi: 10.1016/0883-2897(88)90007-4. [DOI] [PubMed] [Google Scholar]
  11. Chaplin D. J. Potentiation of RSU-1069 tumour cytotoxicity by 5-hydroxytryptamine (5-HT). Br J Cancer. 1986 Nov;54(5):727–731. doi: 10.1038/bjc.1986.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ching L. M., Joseph W. R., Baguley B. C. Antitumour responses to flavone-8-acetic acid and 5,6-dimethylxanthenone-4-acetic acid in immune deficient mice. Br J Cancer. 1992 Jul;66(1):128–130. doi: 10.1038/bjc.1992.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ching L. M., Joseph W. R., Crosier K. E., Baguley B. C. Induction of tumor necrosis factor-alpha messenger RNA in human and murine cells by the flavone acetic acid analogue 5,6-dimethylxanthenone-4-acetic acid (NSC 640488). Cancer Res. 1994 Feb 15;54(4):870–872. [PubMed] [Google Scholar]
  14. Cliffe S., Taylor M. L., Rutland M., Baguley B. C., Hill R. P., Wilson W. R. Combining bioreductive drugs (SR 4233 or SN 23862) with the vasoactive agents flavone acetic acid or 5,6-dimethylxanthenone acetic acid. Int J Radiat Oncol Biol Phys. 1994 May 15;29(2):373–377. doi: 10.1016/0360-3016(94)90292-5. [DOI] [PubMed] [Google Scholar]
  15. Dark G. G., Hill S. A., Prise V. E., Tozer G. M., Pettit G. R., Chaplin D. J. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 1997 May 15;57(10):1829–1834. [PubMed] [Google Scholar]
  16. Edwards H. S., Bremner J. C., Stratford I. J. Induction of tumour hypoxia by FAA and TNF: interaction with bioreductive drugs. Int J Radiat Biol. 1991 Jul-Aug;60(1-2):373–377. doi: 10.1080/09553009114552181. [DOI] [PubMed] [Google Scholar]
  17. Finlay G. J., Smith G. P., Fray L. M., Baguley B. C. Effect of flavone acetic acid on Lewis lung carcinoma: evidence for an indirect effect. J Natl Cancer Inst. 1988 Apr 20;80(4):241–245. doi: 10.1093/jnci/80.4.241. [DOI] [PubMed] [Google Scholar]
  18. Futami H., Eader L. A., Komschlies K. L., Bull R., Gruys M. E., Ortaldo J. R., Young H. A., Wiltrout R. H. Flavone acetic acid directly induces expression of cytokine genes in mouse splenic leukocytes but not in human peripheral blood leukocytes. Cancer Res. 1991 Dec 15;51(24):6596–6602. [PubMed] [Google Scholar]
  19. Hill S. A., Williams K. B., Denekamp J. A comparison of vascular-mediated tumor cell death by the necrotizing agents GR63178 and flavone acetic acid. Int J Radiat Oncol Biol Phys. 1992;22(3):437–441. doi: 10.1016/0360-3016(92)90848-c. [DOI] [PubMed] [Google Scholar]
  20. Hill S., Williams K. B., Denekamp J. Vascular collapse after flavone acetic acid: a possible mechanism of its anti-tumour action. Eur J Cancer Clin Oncol. 1989 Oct;25(10):1419–1424. doi: 10.1016/0277-5379(89)90099-0. [DOI] [PubMed] [Google Scholar]
  21. Jenkins T. C., Naylor M. A., O'Neill P., Threadgill M. D., Cole S., Stratford I. J., Adams G. E., Fielden E. M., Suto M. J., Stier M. A. Synthesis and evaluation of alpha-[[(2-haloethyl)amino]methyl]-2- nitro-1H-imidazole-1-ethanols as prodrugs of alpha-[(1-aziridinyl)methyl]-2- nitro-1H-imidazole-1-ethanol (RSU-1069) and its analogues which are radiosensitizers and bioreductively activated cytotoxins. J Med Chem. 1990 Sep;33(9):2603–2610. doi: 10.1021/jm00171a040. [DOI] [PubMed] [Google Scholar]
  22. Kerr D. J., Kaye S. B. Flavone acetic acid--preclinical and clinical activity. Eur J Cancer Clin Oncol. 1989 Sep;25(9):1271–1272. doi: 10.1016/0277-5379(89)90072-2. [DOI] [PubMed] [Google Scholar]
  23. Koch C. J. Unusual oxygen concentration dependence of toxicity of SR-4233, a hypoxic cell toxin. Cancer Res. 1993 Sep 1;53(17):3992–3997. [PubMed] [Google Scholar]
  24. Laws A. L., Matthew A. M., Double J. A., Bibby M. C. Preclinical in vitro and in vivo activity of 5,6-dimethylxanthenone-4-acetic acid. Br J Cancer. 1995 Jun;71(6):1204–1209. doi: 10.1038/bjc.1995.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mahadevan V., Malik S. T., Meager A., Fiers W., Lewis G. P., Hart I. R. Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown. Cancer Res. 1990 Sep 1;50(17):5537–5542. [PubMed] [Google Scholar]
  26. Manda T., Nishigaki F., Mori J., Shimomura K. Important role of serotonin in the antitumor effects of recombinant human tumor necrosis factor-alpha in mice. Cancer Res. 1988 Aug 1;48(15):4250–4255. [PubMed] [Google Scholar]
  27. Moselen J. W., Hay M. P., Denny W. A., Wilson W. R. N-[2-(2-methyl-5-nitroimidazolyl)ethyl]-4-(2-nitroimidazolyl)butanamide (NSC 639862), a bisnitroimidazole with enhanced selectivity as a bioreductive drug. Cancer Res. 1995 Feb 1;55(3):574–580. [PubMed] [Google Scholar]
  28. O'Reilly S. M., Rustin G. J., Farmer K., Burke M., Hill S., Denekamp J. Flavone acetic acid (FAA) with recombinant interleukin-2 (rIL-2) in advanced malignant melanoma: I. Clinical and vascular studies. Br J Cancer. 1993 Jun;67(6):1342–1345. doi: 10.1038/bjc.1993.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Palmer B. D., Wilson W. R., Atwell G. J., Schultz D., Xu X. Z., Denny W. A. Hypoxia-selective antitumor agents. 9. Structure-activity relationships for hypoxia-selective cytotoxicity among analogues of 5-[N,N-bis(2-chloroethyl)amino]-2,4-dinitrobenzamide. J Med Chem. 1994 Jul 8;37(14):2175–2184. doi: 10.1021/jm00040a009. [DOI] [PubMed] [Google Scholar]
  30. Palmer B. D., Wilson W. R., Cliffe S., Denny W. A. Hypoxia-selective antitumor agents. 5. Synthesis of water-soluble nitroaniline mustards with selective cytotoxicity for hypoxic mammalian cells. J Med Chem. 1992 Aug 21;35(17):3214–3222. doi: 10.1021/jm00095a018. [DOI] [PubMed] [Google Scholar]
  31. Pedley R. B., Begent R. H., Boden J. A., Boxer G. M., Boden R., Keep P. A. Enhancement of radioimmunotherapy by drugs modifying tumour blood flow in a colonic xenograft model. Int J Cancer. 1994 Jun 15;57(6):830–835. doi: 10.1002/ijc.2910570611. [DOI] [PubMed] [Google Scholar]
  32. Pedley R. B., Boden J. A., Boden R., Boxer G. M., Flynn A. A., Keep P. A., Begent R. H. Ablation of colorectal xenografts with combined radioimmunotherapy and tumor blood flow-modifying agents. Cancer Res. 1996 Jul 15;56(14):3293–3300. [PubMed] [Google Scholar]
  33. Peters C. E., Chaplin D. J. Blood flow modification in the SCCVII tumor: effects of 5-hydroxytryptamine, hydralazine, and propranolol. Int J Radiat Oncol Biol Phys. 1992;22(3):463–465. doi: 10.1016/0360-3016(92)90854-b. [DOI] [PubMed] [Google Scholar]
  34. Philpott M., Joseph W. R., Crosier K. E., Baguley B. C., Ching L. M. Production of tumour necrosis factor-alpha by cultured human peripheral blood leucocytes in response to the anti-tumour agent 5,6-dimethylxanthenone-4-acetic acid (NSC 640488). Br J Cancer. 1997;76(12):1586–1591. doi: 10.1038/bjc.1997.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pratesi G., Rodolfo M., Rovetta G., Parmiani G. Role of T cells and tumour necrosis factor in antitumour activity and toxicity of flavone acetic acid. Eur J Cancer. 1990;26(10):1079–1083. doi: 10.1016/0277-5379(90)90056-y. [DOI] [PubMed] [Google Scholar]
  36. Pruijn F. B., van Daalen M., Holford N. H., Wilson W. R. Mechanisms of enhancement of the antitumour activity of melphalan by the tumour-blood-flow inhibitor 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother Pharmacol. 1997;39(6):541–546. doi: 10.1007/s002800050611. [DOI] [PubMed] [Google Scholar]
  37. Rewcastle G. W., Atwell G. J., Li Z. A., Baguley B. C., Denny W. A. Potential antitumor agents. 61. Structure-activity relationships for in vivo colon 38 activity among disubstituted 9-oxo-9H-xanthene-4-acetic acids. J Med Chem. 1991 Jan;34(1):217–222. doi: 10.1021/jm00105a034. [DOI] [PubMed] [Google Scholar]
  38. Rewcastle G. W., Kestell P., Baguley B. C., Denny W. A. Light-induced breakdown of flavone acetic acid and xanthenone analogues in solution. J Natl Cancer Inst. 1990 Mar 21;82(6):528–529. doi: 10.1093/jnci/82.6.528. [DOI] [PubMed] [Google Scholar]
  39. Silobrcic V., Suit H. D. Tumor-specific antigen(s) in a spontaneous mammary carcinoma of C3H mice. I. Quantitative cell transplants into mammary-tumor-agent-positive and -free mice. J Natl Cancer Inst. 1967 Dec;39(6):1113–1119. [PubMed] [Google Scholar]
  40. Stücker O., Vicaut E., Teisseire B. Hyper-responsiveness to 5-HT2 agonists by tumour-linked arterioles in mice: consequences for tumor growth. Int J Radiat Biol. 1991 Jul-Aug;60(1-2):237–241. doi: 10.1080/09553009114551921. [DOI] [PubMed] [Google Scholar]
  41. Sun J. R., Brown J. M. Enhancement of the antitumor effect of flavone acetic acid by the bioreductive cytotoxic drug SR 4233 in a murine carcinoma. Cancer Res. 1989 Oct 15;49(20):5664–5670. [PubMed] [Google Scholar]
  42. Wilson W. R., Denny W. A., Pullen S. M., Thompson K. M., Li A. E., Patterson L. H., Lee H. H. Tertiary amine N-oxides as bioreductive drugs: DACA N-oxide, nitracrine N-oxide and AQ4N. Br J Cancer Suppl. 1996 Jul;27:S43–S47. [PMC free article] [PubMed] [Google Scholar]
  43. Wilson W. R., Pruijn F. B. Hypoxia-activated prodrugs as antitumour agents: strategies for maximizing tumour cell killing. Clin Exp Pharmacol Physiol. 1995 Nov;22(11):881–885. doi: 10.1111/j.1440-1681.1995.tb01956.x. [DOI] [PubMed] [Google Scholar]
  44. Zwi L. J., Baguley B. C., Gavin J. B., Wilson W. R. Blood flow failure as a major determinant in the antitumor action of flavone acetic acid. J Natl Cancer Inst. 1989 Jul 5;81(13):1005–1013. doi: 10.1093/jnci/81.13.1005. [DOI] [PubMed] [Google Scholar]
  45. Zwi L. J., Baguley B. C., Gavin J. B., Wilson W. R. Correlation between immune and vascular activities of xanthenone acetic acid antitumor agents. Oncol Res. 1994;6(2):79–85. [PubMed] [Google Scholar]
  46. Zwi L. J., Baguley B. C., Gavin J. B., Wilson W. R. The morphological effects of the anti-tumor agents flavone acetic acid and 5,6-dimethyl xanthenone acetic acid on the colon 38 mouse tumor. Pathology. 1994 Apr;26(2):161–169. doi: 10.1080/00313029400169411. [DOI] [PubMed] [Google Scholar]
  47. Zwi L. J., Baguley B. C., Gavin J. B., Wilson W. R. The use of vascularised spheroids to investigate the action of flavone acetic acid on tumour blood vessels. Br J Cancer. 1990 Aug;62(2):231–237. doi: 10.1038/bjc.1990.266. [DOI] [PMC free article] [PubMed] [Google Scholar]