Role and expression of the Bacillus subtilis rodC operon (original) (raw)

Abstract

The role of the rodC operon in Bacillus subtilis was investigated. The operon encodes two genes (rodD and rodC) necessary for the synthesis of the cell wall teichoic acid. Transcription of this operon is responsive to levels of phosphate and to concentrations of magnesium ions in the growth medium. This regulation of mRNA production corresponds to conditions that dictate the type of polymer that will be synthesized for the cell wall, i.e., teichoic or teichuronic acid. While the introduction of multiple copies of rodC was tolerated by the cells, multiple copies of rodD appeared to be lethal. The lethality of the rodD fragment was not exhibited if multiple copies of rodC were also present.

4341

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. M., Ruley H. E., Bott K. F. Isolation of an autonomously replicating DNA fragment from the region of defective bacteriophage PBSX of Bacillus subtilis. J Bacteriol. 1982 Jun;150(3):1280–1286. doi: 10.1128/jb.150.3.1280-1286.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archibald A. R., Coapes H. E. The influence of growth conditions on the presence of bacteriophage-receptor sites in walls of Bacillus subtilis W23. Biochem J. 1971 Nov;125(2):667–669. doi: 10.1042/bj1250667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Archibald A. R., Glassey K., Green R. S., Lang W. K. Cell wall composition and surface properties in Bacillus subtilis: anomalous effect of incubation temperature on the phage-binding properties of bacteria containing varied amounts of teichoic acid. J Gen Microbiol. 1989 Mar;135(3):667–673. doi: 10.1099/00221287-135-3-667. [DOI] [PubMed] [Google Scholar]
  4. Baddiley J. Teichoic acids in cell walls and membranes of bacteria. Essays Biochem. 1972;8:35–77. [PubMed] [Google Scholar]
  5. Dagert M., Ehrlich S. D. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene. 1979 May;6(1):23–28. doi: 10.1016/0378-1119(79)90082-9. [DOI] [PubMed] [Google Scholar]
  6. Ellwood D. C., Turner W. H., Hunter J. R., Moody G. R. Changes in the cell-wqall composition of a strain of Bacillus subtilis grown in a chemostat. Biochem J. 1969 Jun;113(2):14P–15P. doi: 10.1042/bj1130014pb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Erickson R. J., Copeland J. C. Structure and replication of chromosomes in competent cells of Bacillus subtilis. J Bacteriol. 1972 Mar;109(3):1075–1084. doi: 10.1128/jb.109.3.1075-1084.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferrari F. A., Nguyen A., Lang D., Hoch J. A. Construction and properties of an integrable plasmid for Bacillus subtilis. J Bacteriol. 1983 Jun;154(3):1513–1515. doi: 10.1128/jb.154.3.1513-1515.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forsberg C. W., Wyrick P. B., Ward J. B., Rogers H. J. Effect of phosphate limitation on the morphology and wall composition of Bacillus licheniformis and its phosphoglucomutase-deficient mutants. J Bacteriol. 1973 Feb;113(2):969–984. doi: 10.1128/jb.113.2.969-984.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujita Y., Fujita T., Miwa Y., Nihashi J., Aratani Y. Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J Biol Chem. 1986 Oct 15;261(29):13744–13753. [PubMed] [Google Scholar]
  11. Glaser L., Loewy A. Regulation of teichoic acid synthesis during phosphate limitation. J Biol Chem. 1979 Apr 10;254(7):2184–2186. [PubMed] [Google Scholar]
  12. Gray O., Chang S. Molecular cloning and expression of Bacillus licheniformis beta-lactamase gene in Escherichia coli and Bacillus subtilis. J Bacteriol. 1981 Jan;145(1):422–428. doi: 10.1128/jb.145.1.422-428.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Honeyman A. L., Stewart G. C. Identification of the protein encoded by rodC, a cell division gene from Bacillus subtilis. Mol Microbiol. 1988 Nov;2(6):735–741. doi: 10.1111/j.1365-2958.1988.tb00084.x. [DOI] [PubMed] [Google Scholar]
  14. Honeyman A. L., Stewart G. C. The nucleotide sequence of the rodC operon of Bacillus subtilis. Mol Microbiol. 1989 Sep;3(9):1257–1268. doi: 10.1111/j.1365-2958.1989.tb00276.x. [DOI] [PubMed] [Google Scholar]
  15. Karamata D., McConnell M., Rogers H. J. Mapping of rod mutants of Bacillus subtilis. J Bacteriol. 1972 Jul;111(1):73–79. doi: 10.1128/jb.111.1.73-79.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karamata D., Pooley H. M., Monod M. Expression of heterologous genes for wall teichoic acid in Bacillus subtilis 168. Mol Gen Genet. 1987 Apr;207(1):73–81. doi: 10.1007/BF00331493. [DOI] [PubMed] [Google Scholar]
  17. Mauël C., Young M., Margot P., Karamata D. The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol Gen Genet. 1989 Feb;215(3):388–394. doi: 10.1007/BF00427034. [DOI] [PubMed] [Google Scholar]
  18. Ostroff G. R., Pène J. J. Molecular cloning with bifunctional plasmid vectors in Bacillus subtilis. I. Construction and analysis of B. subtilis clone banks in Escherichia coli. Mol Gen Genet. 1984;193(2):299–305. doi: 10.1007/BF00330684. [DOI] [PubMed] [Google Scholar]
  19. Pooley H. M., Paschoud D., Karamata D. The gtaB marker in Bacillus subtilis 168 is associated with a deficiency in UDPglucose pyrophosphorylase. J Gen Microbiol. 1987 Dec;133(12):3481–3493. doi: 10.1099/00221287-133-12-3481. [DOI] [PubMed] [Google Scholar]
  20. Reusch V. M., Jr, Hale S. G., Hurly B. J. Levels of cell wall enzymes in endospores and vegetative cells of Bacillus subtilis. J Bacteriol. 1982 Dec;152(3):1147–1153. doi: 10.1128/jb.152.3.1147-1153.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rogers H. J., McConnell M., Burdett I. D. The isolation and characterization of mutants of Bacillus subtilis and Bacillus licheniformis with disturbed morphology and cell division. J Gen Microbiol. 1970 May;61(2):155–171. doi: 10.1099/00221287-61-2-155. [DOI] [PubMed] [Google Scholar]
  22. Smith G. E., Summers M. D. The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Anal Biochem. 1980 Nov 15;109(1):123–129. doi: 10.1016/0003-2697(80)90019-6. [DOI] [PubMed] [Google Scholar]
  23. Ward J. B. Teichoic and teichuronic acids: biosynthesis, assembly, and location. Microbiol Rev. 1981 Jun;45(2):211–243. doi: 10.1128/mr.45.2.211-243.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  25. Yasbin R. E., Maino V. C., Young F. E. Bacteriophage resistance in Bacillus subtilis 168, W23, and interstrain transformants. J Bacteriol. 1976 Mar;125(3):1120–1126. doi: 10.1128/jb.125.3.1120-1126.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Young F. E. Requirement of glucosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2377–2384. doi: 10.1073/pnas.58.6.2377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Young F. E., Smith C., Reilly B. E. Chromosomal location of genes regulating resistance to bacteriophage in Bacillus subtilis. J Bacteriol. 1969 Jun;98(3):1087–1097. doi: 10.1128/jb.98.3.1087-1097.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]