LYSOSOMES IN THE RAT SCIATIC NERVE FOLLOWING CRUSH (original) (raw)

Abstract

Peripheral nerves undergoing degeneration are favorable material for studying the types, origins, and functions of lysosomes. The following lysosomes are described: (a) Autophagic vacuoles in altered Schwann cells. Within these vacuoles the myelin and much of the axoplasm which it encloses in the normal nerve are degraded (Wallerian degeneration). The delimiting membranes of the vacuoles apparently form from myelin lamellae. Considered as possible sources of their acid phosphatase are Golgi vesicles (primary lysosomes), lysosomes of the dense body type, and the endoplasmic reticulum which lies close to the vacuoles. (b) Membranous bodies that accumulate focally in myelinated fibers in a zone extending 2 to 3 mm distal to the crush. These appear to arise from the endoplasmic reticulum in which demonstrable acid phosphatase activity increases markedly within 2 hours after the nerve is crushed. (c) Autophagic vacuoles in the axoplasm of fibers proximal to the crush. The breakdown of organelles within these vacuoles may have significance for the reorganization of the axoplasm preparatory to regeneration. (d) Phagocytic vacuoles of altered Schwann cells. As myelin degeneration begins, some axoplasm is exposed. This is apparently engulfed by the filopodia of the Schwann cells, and degraded within the phagocytic vacuoles thus formed. (e) Multivesicular bodies in the axoplasm of myelinated fibers. These are generally seen near the nodes of Ranvier.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADAMS C. W., TUQAN N. A. Histochemistry of myelin. II. Proteins, lipid-protein dissociation and proteinase activity in Wallerian degeneration. J Neurochem. 1961 Mar;6:334–341. doi: 10.1111/j.1471-4159.1961.tb13484.x. [DOI] [PubMed] [Google Scholar]
  2. ANDERSON P. J., SONG S. K. Acid phosphatase in the nervous system. J Neuropathol Exp Neurol. 1962 Apr;21:263–283. doi: 10.1097/00005072-196204000-00008. [DOI] [PubMed] [Google Scholar]
  3. Aleu F. P., Katzman R., Terry R. D. Fine structure and electrolyte analyses of cerebral edema induced by alkyl tin intoxication. J Neuropathol Exp Neurol. 1963 Jul;22(3):403–413. doi: 10.1097/00005072-196307000-00003. [DOI] [PubMed] [Google Scholar]
  4. BALIS J. U., CONEN P. E. THE ROLE OF ALVEOLAR INCLUSION BODIES IN THE DEVELOPING LUNG. Lab Invest. 1964 Oct;13:1215–1229. [PubMed] [Google Scholar]
  5. BARTON A. A. An electron microscope study of degeneration and regeneration of nerve. Brain. 1962 Dec;85:799–808. doi: 10.1093/brain/85.4.799. [DOI] [PubMed] [Google Scholar]
  6. BEHNKE O. DEMONSTRATION OF ACID PHOSPHATASE-CONTAINING GRANULES AND CYTOPLASMIC BODIES IN THE EPITHELIUM OF FOETAL RAT DUODENUM DURING CERTAIN STAGES OF DIFFERENTIATION. J Cell Biol. 1963 Aug;18:251–265. doi: 10.1083/jcb.18.2.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FINEAN J. B., WOOLF A. L. An electron microscope study of degenerative changes in human cutaneous nerve. J Neuropathol Exp Neurol. 1962 Jan;21:105–115. doi: 10.1097/00005072-196201000-00009. [DOI] [PubMed] [Google Scholar]
  8. FISHER E. R., TURANO A. Schwann cells in wallerian degeneration. Arch Pathol. 1963 May;75:517–527. [PubMed] [Google Scholar]
  9. GLIMSTEDT G., WOHLFART G. Electron microscopic observations on Wallerian degeneration in peripheral nerves. Acta Morphol Neerl Scand. 1960;3:135–146. [PubMed] [Google Scholar]
  10. GONATAS N. K., LEVINE S., SHOULSON R. ELECTRON MICROSCOPIC INVESTIGATION OF PHAGOCYTOSIS OF MYELIN IN AN EXPERIMENTAL LEUKOENCEPHALOPATHY. Ann N Y Acad Sci. 1965 Mar 31;122:6–14. doi: 10.1111/j.1749-6632.1965.tb20187.x. [DOI] [PubMed] [Google Scholar]
  11. LAMPERT P., BLUMBERG J. M., PENTSCHEW A. AN ELECTRON MICROSCOPIC STUDY OF DYSTROPHIC AXONS IN THE GRACILE AND CUNEATE NUCLEI OF VITAMIN E-DEFICIENT RATS. J Neuropathol Exp Neurol. 1964 Jan;23:60–77. doi: 10.1097/00005072-196401000-00005. [DOI] [PubMed] [Google Scholar]
  12. LAMPERT P., CRESSMAN M. AXONAL REGENERATION IN THE DORSAL COLUMNS OF THE SPINAL CORD OF ADULT RATS. AN ELECTRON MICROSCOPIC STUDY. Lab Invest. 1964 Aug;13:825–839. [PubMed] [Google Scholar]
  13. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MILLER F., PALADE G. E. LYTIC ACTIVITIES IN RENAL PROTEIN ABSORPTION DROPLETS. AN ELECTRON MICROSCOPICAL CYTOCHEMICAL STUDY. J Cell Biol. 1964 Dec;23:519–552. doi: 10.1083/jcb.23.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MOE H., BEHNKE O. Cytoplasmic bodies containing mitochondria, ribosomes, and rough surfaced endoplasmic membranes in the epithelium of the small intestine of newborn rats. J Cell Biol. 1962 Apr;13:168–171. doi: 10.1083/jcb.13.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. NATHANIEL E. J., PEASE D. C. REGENERATIVE CHANGES IN RAT DORSAL ROOTS FOLLOWING WALERIAN DEGENERATION. J Ultrastruct Res. 1963 Dec;52:533–549. doi: 10.1016/s0022-5320(63)80083-0. [DOI] [PubMed] [Google Scholar]
  17. NOBACK C. R., REILLY J. A. Myelin sheath during degeneration and regeneration. II. Histochemistry. J Comp Neurol. 1956 Sep;105(2):333–353. doi: 10.1002/cne.901050208. [DOI] [PubMed] [Google Scholar]
  18. NOVIKOFF A. B., ESSNER E., QUINTANA N. GOLGI APPARATUS AND LYSOSOMES. Fed Proc. 1964 Sep-Oct;23:1010–1022. [PubMed] [Google Scholar]
  19. PALADE G. E. A study of fixation for electron microscopy. J Exp Med. 1952 Mar;95(3):285–298. doi: 10.1084/jem.95.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PALAY S. L. The fine structure of secretory neurons in the preoptic nucleus of the goldish (Carassius auratus). Anat Rec. 1960 Dec;138:417–443. doi: 10.1002/ar.1091380404. [DOI] [PubMed] [Google Scholar]
  21. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. ROSENBLUTH J. Contrast between osmium-fixed and permanganate-fixed toad spinal ganglia. J Cell Biol. 1963 Jan;16:143–157. doi: 10.1083/jcb.16.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. ROSENBLUTH J. The visceral ganglion of Aplysia californica. Z Zellforsch Mikrosk Anat. 1963;60:213–236. doi: 10.1007/BF00350477. [DOI] [PubMed] [Google Scholar]
  24. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SANBORN E., KOEN P. F., MACNABB J. D., MOORE G. CYTOPLASMIC MICROTUBULES IN MAMMALIAN CELLS. J Ultrastruct Res. 1964 Aug;11:123–138. doi: 10.1016/s0022-5320(64)80097-6. [DOI] [PubMed] [Google Scholar]
  26. SCHLAEPFER W. W., HAGER H. ULTRASTRUCTURAL STUDIES OF INH-INDUCED NEUROPATHY IN RATS. II. ALTERATION AND DECOMPOSITION OF THE MYELIN SHEATH. Am J Pathol. 1964 Sep;45:423–433. [PMC free article] [PubMed] [Google Scholar]
  27. SWIFT H., HRUBAN Z. FOCAL DEGRADATION AS A BIOLOGICAL PROCESS. Fed Proc. 1964 Sep-Oct;23:1026–1037. [PubMed] [Google Scholar]
  28. TAXI J. Etude au microscope électronique de la dégénérescence wallérienne des fibres nerveuses amyéliniques. C R Hebd Seances Acad Sci. 1959 May 11;248(19):2796–2798. [PubMed] [Google Scholar]
  29. TERRY R. D., PENA C. EXPERIMENTAL PRODUCTION OF NEUROFIBRILLARY DEGENERATION 2. ELECTRON MICROSCOPY, PHOSPHATASE HISTOCHEMISTRY AND ELECTRON PROBE ANALYSIS. J Neuropathol Exp Neurol. 1965 Apr;24:200–210. doi: 10.1097/00005072-196504000-00003. [DOI] [PubMed] [Google Scholar]
  30. THOMAS P. K., SHELDON H. TUBULAR ARRAYS DERIVED FROM MYELIN BREAKDOWN DURING WALLERIAN DEGENERATION OF PERIPHERAL NERVE. J Cell Biol. 1964 Sep;22:715–718. doi: 10.1083/jcb.22.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. THOMAS P. K. THE DEPOSITION OF COLLAGEN IN RELATION TO SCHWANN CELL BASEMENT MEMBRANE DURING PERIPHERAL NERVE REGENERATION. J Cell Biol. 1964 Nov;23:375–382. doi: 10.1083/jcb.23.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. VIAL J. D. The early changes in the axoplasm during wallerian degeneration. J Biophys Biochem Cytol. 1958 Sep 25;4(5):551–555. doi: 10.1083/jcb.4.5.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. WEBSTER H. D. Transient, focal accumulation of axonal mitochondria during the early stages of wallerian degeneration. J Cell Biol. 1962 Feb;12:361–383. doi: 10.1083/jcb.12.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. WEBSTER H. F. THE RELATIONSHIP BETWEEN SCHMIDT-LANTERMANN INCISURES AND MYELIN SEGMENTATION DURING WALLERIAN DEGENERATION. Ann N Y Acad Sci. 1965 Mar 31;122:29–38. doi: 10.1111/j.1749-6632.1965.tb20189.x. [DOI] [PubMed] [Google Scholar]
  36. WEBSTER H., COLLINS G. H. COMPARISON OF OSMIUM TETROXIDE AND GLUTARALDEHYDE PERFUSION FIXATION FOR THE ELECTRON MICROSCOPIC STUDY OF THE NORMAL RAT PERIPHERAL NERVOUS SYSTEM. J Neuropathol Exp Neurol. 1964 Jan;23:109–126. doi: 10.1093/jnen/23.1.109. [DOI] [PubMed] [Google Scholar]
  37. WECHSLER W., HAGER H. [Electron microscopic study of Waller's degeneration of peripheral mammalian nerves]. Beitr Pathol Anat. 1962 Jul;126:352–380. [PubMed] [Google Scholar]
  38. WETTSTEIN R., SOTELO J. R. Electron microscope study on the regenerative process of peripheral nerves of mice. Z Zellforsch Mikrosk Anat. 1963;59:708–730. doi: 10.1007/BF00319067. [DOI] [PubMed] [Google Scholar]