FLAGELLAR MOTION AND FINE STRUCTURE OF THE FLAGELLAR APPARATUS IN CHLAMYDOMONAS (original) (raw)

Abstract

The biflagellate alga Chlamydomonas reinhardi was studied with the light and electron microscopes to determine the behavior of flagella in the living cell and the structure of the basal apparatus of the flagella. During normal forward swimming the flagella beat synchronously in the same plane, as in the human swimmer's breast stroke. The form of beat is like that of cilia. Occasionally cells swim backward with the flagella undulating and trailing the cell. Thus the same flagellar apparatus produces two types of motion. The central pair of fibers of both flagella appear to lie in the same plane, which coincides with the plane of beat. The two basal bodies lie in a V configuration and are joined at the top by a striated fiber and at the bottom by two smaller fibers. From the area between the basal bodies four bands of microtubules, each containing four tubules, radiate in an X-shaped pattern, diverge, and pass under the cell membrane. Details of the complex arrangement of tubules near the basal bodies are described. It seems probable that the connecting fibers and the microtubules play structural roles and thereby maintain the alignment of the flagellar apparatus. The relation of striated fibers and microtubules to cilia and flagella is reviewed, particularly in phytoflagellates and protozoa. Structures observed in the transitional region between the basal body and flagellar shaft are described and their occurrence is reviewed. Details of structure of the flagellar shaft and flagellar tip are described, and the latter is reviewed in detail.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AFZELIUS B. A. The fine structure of the cilia from ctenophore swimming-plates. J Biophys Biochem Cytol. 1961 Feb;9:383–394. doi: 10.1083/jcb.9.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ANDERSON E. A cytological study of Chilomonas paramecium with particular reference to the so-called trichocysts. J Protozool. 1962 Nov;9:380–395. doi: 10.1111/j.1550-7408.1962.tb02640.x. [DOI] [PubMed] [Google Scholar]
  3. ANDRE J. [On some newly discovered details of the ultrastructure of the vibratile organites]. J Ultrastruct Res. 1961 Mar;5:86–108. doi: 10.1016/s0022-5320(61)80007-5. [DOI] [PubMed] [Google Scholar]
  4. BARNES B. G. Ciliated secretory cells in the pars distalis of the mouse hypophysis. J Ultrastruct Res. 1961 Oct;5:453–467. doi: 10.1016/s0022-5320(61)80019-1. [DOI] [PubMed] [Google Scholar]
  5. BENNETT H. S., LUFT J. H. zeta-Collidine as a basis for buffering fixatives. J Biophys Biochem Cytol. 1959 Aug;6(1):113–114. doi: 10.1083/jcb.6.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BRIGHTMAN M. W., PALAY S. L. THE FINE STRUCTURE OF EPENDYMA IN THE BRAIN OF THE RAT. J Cell Biol. 1963 Nov;19:415–439. doi: 10.1083/jcb.19.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BROKAW C. J. Decreased adenosine triphosphatase acivity of flagella from a paralyzed mutant of Chlamydomonas moewusii. Exp Cell Res. 1960 Mar;19:430–432. doi: 10.1016/0014-4827(60)90027-6. [DOI] [PubMed] [Google Scholar]
  8. BYERS B., PORTER K. R. ORIENTED MICROTUBULES IN ELONGATING CELLS OF THE DEVELOPING LENS RUDIMENT AFTER INDUCTION. Proc Natl Acad Sci U S A. 1964 Oct;52:1091–1099. doi: 10.1073/pnas.52.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. COLWIN A. L., COLWIN L. H. Fine structure of the spermatozoon of Hydroides hexagonus (Annelida), with special reference to the acrosomal region. J Biophys Biochem Cytol. 1961 Jun;10:211–230. doi: 10.1083/jcb.10.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. EAKIN R. M., WESTFALL J. A. FINE STRUCTURE OF THE EYE OF A CHAETOGNATH. J Cell Biol. 1964 Apr;21:115–132. doi: 10.1083/jcb.21.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FAURE-FREMIET E. [Vibratile cilia and flagella]. Biol Rev Camb Philos Soc. 1961 Nov;36:464–536. doi: 10.1111/j.1469-185x.1961.tb01598.x. [DOI] [PubMed] [Google Scholar]
  12. FAWCETT D. W., ITO S. THE FINE STRUCTURE OF BAT SPERMATOZOA. Am J Anat. 1965 May;116:567–609. doi: 10.1002/aja.1001160306. [DOI] [PubMed] [Google Scholar]
  13. FAWCETT W., WITEBSKY F. OBSERVATIONS ON THE ULTRASTRUCTURE OF NUCLEATED ERYTHROCYTES AND THROMBOCYTES, WITH PARTICULAR REFERENCE TO THE STRUCTURAL BASIS OF THEIR DISCOIDAL SHAPE. Z Zellforsch Mikrosk Anat. 1964 May 29;62:785–806. doi: 10.1007/BF00342184. [DOI] [PubMed] [Google Scholar]
  14. FLOCK A., DUVALL A. J., 3rd THE ULTRASTRUCTURE OF THE KINOCILIUM OF THE SENSORY CELLS IN THE INNER EAR AND LATERAL LINE ORGANS. J Cell Biol. 1965 Apr;25:1–8. doi: 10.1083/jcb.25.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fawcett D. W. The anatomy of the mammalian spermatozoon with particular reference to the guinea pig. Z Zellforsch Mikrosk Anat. 1965 Jul 30;67(3):279–296. doi: 10.1007/BF00339376. [DOI] [PubMed] [Google Scholar]
  16. GALTSOFF P. S., PHILPOTT D. E. Ultrastructure of the spermatozoon of the oyster. Crassostrea virginica. J Ultrastruct Res. 1960 Feb;3:241–253. doi: 10.1016/s0022-5320(60)80012-3. [DOI] [PubMed] [Google Scholar]
  17. GIBBONS I. R., GRIMSTONE A. V. On flagellar structure in certain flagellates. J Biophys Biochem Cytol. 1960 Jul;7:697–716. doi: 10.1083/jcb.7.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. GIBBS S. P., LEWIN R. A., PHILPOTT D. E. The fine structure of the flagellar apparatus of Chlamydomonas moewusii. Exp Cell Res. 1958 Dec;15(3):619–622. doi: 10.1016/0014-4827(58)90112-5. [DOI] [PubMed] [Google Scholar]
  19. GRIMSTONE A. V., CLEVELAND L. R. THE FINE STRUCTURE AND FUNCTION OF THE CONTRACTILE AXOSTYLES OF CERTAIN FLAGELLATES. J Cell Biol. 1965 Mar;24:387–400. doi: 10.1083/jcb.24.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. KATES J. R., JONES R. F. THE CONTROL OF GAMETIC DIFFERENTIATION IN LIQUID CULTURES OF CHLAMYDOMONAS. J Cell Physiol. 1964 Apr;63:157–164. doi: 10.1002/jcp.1030630204. [DOI] [PubMed] [Google Scholar]
  21. LANG N. J. AN ADDITIONAL ULTRASTRUCTURAL COMPONENT OF FLAGELLA. J Cell Biol. 1963 Dec;19:631–634. doi: 10.1083/jcb.19.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LANG N. J. ELECTRON-MICROSCOPIC DEMONSTRATION OF PLASTIDS IN POLYTOMA. J Protozool. 1963 Aug;10:333–339. doi: 10.1111/j.1550-7408.1963.tb01685.x. [DOI] [PubMed] [Google Scholar]
  23. LANSING A. I., LAMY F. Fine structure of the cilia of rotifers. J Biophys Biochem Cytol. 1961 Apr;9:799–812. doi: 10.1083/jcb.9.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LEVINE R. P., EBERSOLD W. T. The genetics and cytology of Chlamydomonas. Annu Rev Microbiol. 1960;14:197–216. doi: 10.1146/annurev.mi.14.100160.001213. [DOI] [PubMed] [Google Scholar]
  25. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MANTON I. FURTHER OBSERVATIONS ON THE FINE STRUCTURE OF THE HAPTONEMA IN PRYMNESIUM PARVUM. Arch Mikrobiol. 1964 Nov 19;49:315–330. doi: 10.1007/BF00406854. [DOI] [PubMed] [Google Scholar]
  27. MANTON I. Observations on the microanatomy of the spermatozoid of the bracken fern (Pteridium aquilinum). J Biophys Biochem Cytol. 1959 Dec;6:413–418. doi: 10.1083/jcb.6.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. MOLLENHAUER H. H. PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964 Mar;39:111–114. [PubMed] [Google Scholar]
  29. Mizukami I., Gall J. Centriole replication. II. Sperm formation in the fern, Marsilea, and the cycad, Zamia. J Cell Biol. 1966 Apr;29(1):97–111. doi: 10.1083/jcb.29.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. RANDALL J., WARR J. R., HOPKINS J. M., MCVITTIE A. A SINGLE-GENE MUTATION OF CHLAMYDOMONAS REINHARDII AFFECTING MOTILITY: A GENETIC AND ELECTRON MICROSCOPE STUDY. Nature. 1964 Aug 29;203:912–914. doi: 10.1038/203912a0. [DOI] [PubMed] [Google Scholar]
  31. RIS H., PLAUT W. Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J Cell Biol. 1962 Jun;13:383–391. doi: 10.1083/jcb.13.3.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. ROTH L. E. Aspects of ciliary fine structure in Euplotes patella. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):235–240. doi: 10.1083/jcb.2.4.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. ROTH L. E., SHIGENAKA Y. THE STRUCTURE AND FORMATION OF CILIA AND FILAMENTS IN RUMEN PROTOZOA. J Cell Biol. 1964 Feb;20:249–270. doi: 10.1083/jcb.20.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roggen D. R., Raski D. J., Jones N. O. Cilia in nematode sensory organs. Science. 1966 Apr 22;152(3721):515–516. doi: 10.1126/science.152.3721.515. [DOI] [PubMed] [Google Scholar]
  35. Rudzinska M. A. The fine structure and function of the tentacle in Tokophrya infusionum. J Cell Biol. 1965 Jun;25(3):459–477. doi: 10.1083/jcb.25.3.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
  37. SAGER R., PALADE G. E. Chloroplast structure in green and yellow strains of Chlamydomonas. Exp Cell Res. 1954 Nov;7(2):584–588. doi: 10.1016/s0014-4827(54)80107-8. [DOI] [PubMed] [Google Scholar]
  38. SAGER R., PALADE G. E. Structure and development of the chloroplast in Chlamydomonas. I. The normal green cell. J Biophys Biochem Cytol. 1957 May 25;3(3):463–488. doi: 10.1083/jcb.3.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. SAKAGUCHI H. PERICENTRIOLAR FILAMENTOUS BODIES. J Ultrastruct Res. 1965 Feb;12:13–21. doi: 10.1016/s0022-5320(65)80003-x. [DOI] [PubMed] [Google Scholar]
  40. SATIR P. STUDIES ON CILIA. THE FIXATION OF THE METACHRONAL WAVE. J Cell Biol. 1963 Aug;18:345–365. doi: 10.1083/jcb.18.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. SCHUSTER F. AN ELECTRON MICROSCOPE STUDY OF THE AMOEBO-FLAGELLATE, NAEGLERIA GRUBERI (SCHARDINGER). I. THE AMOEBOID AND FLAGELLATE STAGES. J Protozool. 1963 Aug;10:297–313. doi: 10.1111/j.1550-7408.1963.tb01681.x. [DOI] [PubMed] [Google Scholar]
  42. SOMMER J. R. THE ULTRASTRUCTURE OF THE PELLICLE COMPLEX OF EUGLENA GRACILIS. J Cell Biol. 1965 Feb;24:253–257. doi: 10.1083/jcb.24.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. TOKUYASU K., YAMADA E. The fine structure of the retina studied with the electron microscope. IV. Morphogenesis of outer segments of retinal rods. J Biophys Biochem Cytol. 1959 Oct;6:225–230. doi: 10.1083/jcb.6.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tilney L. G., Porter K. R. Studies on microtubules in Heliozoa. I. The fine structure of Actinosphaerium nucleofilum (Barrett), with particular reference to the axial rod structure. Protoplasma. 1965;60(4):317–344. doi: 10.1007/BF01247886. [DOI] [PubMed] [Google Scholar]