THE SYNTHESIS OF ACIDIC CHROMOSOMAL PROTEINS DURING THE CELL CYCLE OF HELA S-3 CELLS: II. The Kinetics of Residual Protein Synthesis and Transport (original) (raw)

Abstract

The kinetics of acidic residual chromosomal protein synthesis and transport were studied throughout the cell cycle in HeLa S-3 cells synchronized by 2 mM thymidine block and selective detachment of mitotic cells. Pulse labeling the cells with leucine-3H for 2 min and then "chasing" the radioactive proteins for up to 3 hr showed that the amount of protein synthesized, transported, and retained in the acidic residual chromosomal protein fraction is greater immediately after mitosis and later in G1 than in the S or G2 phases of the cell cycle. During S, only 20–25% of the proteins synthesized and transported to the acidic residual chromosomal protein fraction are chased during the first 2 hr after pulse labeling, whereas up to 40% of the material entering the residual nuclear fraction in mitosis, G1, and G2 leaves during a 2 hr chase. Polyacrylamide gel electrophoretic profiles of these proteins, at various times after pulse labeling, reveal that the turnover of individual polypeptides within this fraction has kinetics of synthesis and turnover which are markedly different from one another and undergo stage-specific changes.

Full Text

The Full Text of this article is available as a PDF (386.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  2. Hancock R. Conservation of histones in chromatin during growth and mitosis in vitro. J Mol Biol. 1969 Mar 28;40(3):457–466. doi: 10.1016/0022-2836(69)90165-x. [DOI] [PubMed] [Google Scholar]
  3. Maizel J. V., Jr Acrylamide-gel electrophorograms by mechanical fractionation: radioactive adenovirus proteins. Science. 1966 Feb 25;151(3713):988–990. doi: 10.1126/science.151.3713.988. [DOI] [PubMed] [Google Scholar]
  4. ROBBINS E., MARCUS P. I. MITOTICALLY SYNCHRONIZED MAMMALIAN CELLS: A SIMPLE METHOD FOR OBTAINING LARGE POPULATIONS. Science. 1964 May 29;144(3622):1152–1153. doi: 10.1126/science.144.3622.1152. [DOI] [PubMed] [Google Scholar]
  5. Robbins E., Borun T. W. The cytoplasmic synthesis of histones in hela cells and its temporal relationship to DNA replication. Proc Natl Acad Sci U S A. 1967 Feb;57(2):409–416. doi: 10.1073/pnas.57.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rovera G., Baserga R. Early changes in the synthesis of acidic nuclear proteins in human diploid fibroblasts stimulated to synthesize DNA by changing the medium. J Cell Physiol. 1971 Apr;77(2):201–211. doi: 10.1002/jcp.1040770211. [DOI] [PubMed] [Google Scholar]
  7. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  8. Smith J. A., Martin L., King R. J., Vértes M. Effects of oestradiol-17-beta and progesterone on total and nuclear-protein synthesis in epithelial and stromal tissues of the mouse uterus, and of progesterone on the ability of these tissues to bind oestradiol-17-beta. Biochem J. 1970 Oct;119(4):773–784. doi: 10.1042/bj1190773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stein G. S., Borun T. W. The synthesis of acidic chromosomal proteins during the cell cycle of HeLa S-3 cells. I. The accelerated accumulation of acidic residual nuclear protein before the initiation of DNA replication. J Cell Biol. 1972 Feb;52(2):292–307. doi: 10.1083/jcb.52.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Stein G., Baserga R. Cytoplamic synthesis of acidic chromosomal proteins. Biochem Biophys Res Commun. 1971 Jul 2;44(1):218–223. doi: 10.1016/s0006-291x(71)80181-x. [DOI] [PubMed] [Google Scholar]
  11. Stein G., Baserga R. The synthesis of acidic nuclear proteins in the prereplicative phase of the isoproterenol-stimulated salivary gland. J Biol Chem. 1970 Nov 25;245(22):6097–6105. [PubMed] [Google Scholar]
  12. Stellwagen R. H., Cole R. D. Histone biosynthesis in the mammary gland during development and lactation. J Biol Chem. 1969 Sep 25;244(18):4878–4887. [PubMed] [Google Scholar]
  13. TERASIMA T., TOLMACH L. J. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp Cell Res. 1963 Apr;30:344–362. doi: 10.1016/0014-4827(63)90306-9. [DOI] [PubMed] [Google Scholar]
  14. TERASIMA T., TOLMACH L. J. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp Cell Res. 1963 Apr;30:344–362. doi: 10.1016/0014-4827(63)90306-9. [DOI] [PubMed] [Google Scholar]
  15. Teng C. S., Hamilton T. H. Role of chromatin in estrogen action in the uterus. II. Hormone-induced synthesis of nonhistone acidic proteins which restore histone-inhibited DNA-dependent RNA synthesis. Proc Natl Acad Sci U S A. 1969 Jun;63(2):465–472. doi: 10.1073/pnas.63.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. XEROS N. Deoxyriboside control and synchronization of mitosis. Nature. 1962 May 19;194:682–683. doi: 10.1038/194682a0. [DOI] [PubMed] [Google Scholar]