Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3'-terminal exons (original) (raw)

Abstract

Tissue-specific heterogeneity among mammalian acetylcholinesterases (AChE) has been associated with 3' alternative splicing of the primary AChE gene transcript. We have previously demonstrated that human AChE DNA encoding the brain and muscle AChE form and bearing the 3' exon E6 (ACHE-E6) induces accumulation of catalytically active AChE in myotomes and neuromuscular junctions (NMJs) of 2- and 3-day-old Xenopus embryos. Here, we explore the possibility that the 3'-terminal exons of two alternative human AChE cDNA constructs include evolutionarily conserved tissue-recognizable elements. To this end, DNAs encoding alternative human AChE mRNAs were microinjected into cleaving embryos of Xenopus laevis. In contrast to the myotomal expression demonstrated by ACHE-E6, DNA carrying intron 14 and alternative exon E5 (ACHE-I4/E5) promoted punctuated staining of epidermal cells and secretion of AChE into the external medium. Moreover, ACHE-E6-injected embryos displayed enhanced NMJ development, whereas ACHE-I4/E5-derived enzyme was conspicuously absent from muscles and NMJs and its expression in embryos had no apparent effect on NMJ development. In addition, cell-associated AChE from embryos injected with ACHE-I4/E5 DNA was biochemically distinct from that encoded by the muscle-expressible ACHE-E6, displaying higher electrophoretic mobility and greater solubility in low-salt buffer. These findings suggest that alternative 3'-terminal exons dictate tissue-specific accumulation and a particular biological role(s) of AChE, associate the 3' exon E6 with NMJ development, and indicate the existence of a putative secretory AChE form derived from the alternative I4/E5 AChE mRNA.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben Aziz-Aloya R., Seidman S., Timberg R., Sternfeld M., Zakut H., Soreq H. Expression of a human acetylcholinesterase promoter-reporter construct in developing neuromuscular junctions of Xenopus embryos. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2471–2475. doi: 10.1073/pnas.90.6.2471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Billett F. S., Gould R. P. Fine structural changes in the differentiating epidermis of Xenopus laevis embryos. J Anat. 1971 Apr;108(Pt 3):465–480. [PMC free article] [PubMed] [Google Scholar]
  3. Brown B. D., Zipkin I. D., Harland R. M. Sequence-specific endonucleolytic cleavage and protection of mRNA in Xenopus and Drosophila. Genes Dev. 1993 Aug;7(8):1620–1631. doi: 10.1101/gad.7.8.1620. [DOI] [PubMed] [Google Scholar]
  4. Changeux J. P. Compartmentalized transcription of acetylcholine receptor genes during motor endplate epigenesis. New Biol. 1991 May;3(5):413–429. [PubMed] [Google Scholar]
  5. Duval N., Massoulié J., Bon S. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms. J Cell Biol. 1992 Aug;118(3):641–653. doi: 10.1083/jcb.118.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fournier D., Mutero A., Rungger D. Drosophila acetylcholinesterase. Expression of a functional precursor in Xenopus oocytes. Eur J Biochem. 1992 Feb 1;203(3):513–519. doi: 10.1111/j.1432-1033.1992.tb16577.x. [DOI] [PubMed] [Google Scholar]
  7. Hopwood N. D., Pluck A., Gurdon J. B. MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos. EMBO J. 1989 Nov;8(11):3409–3417. doi: 10.1002/j.1460-2075.1989.tb08505.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jasmin B. J., Lee R. K., Rotundo R. L. Compartmentalization of acetylcholinesterase mRNA and enzyme at the vertebrate neuromuscular junction. Neuron. 1993 Sep;11(3):467–477. doi: 10.1016/0896-6273(93)90151-g. [DOI] [PubMed] [Google Scholar]
  9. KARNOVSKY M. J., ROOTS L. A "DIRECT-COLORING" THIOCHOLINE METHOD FOR CHOLINESTERASES. J Histochem Cytochem. 1964 Mar;12:219–221. doi: 10.1177/12.3.219. [DOI] [PubMed] [Google Scholar]
  10. Karpel R., Ben Aziz-Aloya R., Sternfeld M., Ehrlich G., Ginzberg D., Tarroni P., Clementi F., Zakut H., Soreq H. Expression of three alternative acetylcholinesterase messenger RNAs in human tumor cell lines of different tissue origins. Exp Cell Res. 1994 Feb;210(2):268–277. doi: 10.1006/excr.1994.1039. [DOI] [PubMed] [Google Scholar]
  11. Kessel M. Reversal of axonal pathways from rhombomere 3 correlates with extra Hox expression domains. Neuron. 1993 Mar;10(3):379–393. doi: 10.1016/0896-6273(93)90328-o. [DOI] [PubMed] [Google Scholar]
  12. Krejci E., Coussen F., Duval N., Chatel J. M., Legay C., Puype M., Vandekerckhove J., Cartaud J., Bon S., Massoulié J. Primary structure of a collagenic tail peptide of Torpedo acetylcholinesterase: co-expression with catalytic subunit induces the production of collagen-tailed forms in transfected cells. EMBO J. 1991 May;10(5):1285–1293. doi: 10.1002/j.1460-2075.1991.tb08070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Legay C., Bon S., Massoulié J. Expression of a cDNA encoding the glycolipid-anchored form of rat acetylcholinesterase. FEBS Lett. 1993 Jan 4;315(2):163–166. doi: 10.1016/0014-5793(93)81155-s. [DOI] [PubMed] [Google Scholar]
  14. Legay C., Bon S., Vernier P., Coussen F., Massoulié J. Cloning and expression of a rat acetylcholinesterase subunit: generation of multiple molecular forms and complementarity with a Torpedo collagenic subunit. J Neurochem. 1993 Jan;60(1):337–346. doi: 10.1111/j.1471-4159.1993.tb05856.x. [DOI] [PubMed] [Google Scholar]
  15. Li Y., Camp S., Rachinsky T. L., Getman D., Taylor P. Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J Biol Chem. 1991 Dec 5;266(34):23083–23090. [PubMed] [Google Scholar]
  16. Li Y., Camp S., Taylor P. Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J Biol Chem. 1993 Mar 15;268(8):5790–5797. [PubMed] [Google Scholar]
  17. Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
  18. Merlie J. P., Sanes J. R. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature. 1985 Sep 5;317(6032):66–68. doi: 10.1038/317066a0. [DOI] [PubMed] [Google Scholar]
  19. Navaratnam D. S., Priddle J. D., McDonald B., Esiri M. M., Robinson J. R., Smith A. D. Anomalous molecular form of acetylcholinesterase in cerebrospinal fluid in histologically diagnosed Alzheimer's disease. Lancet. 1991 Feb 23;337(8739):447–450. doi: 10.1016/0140-6736(91)93391-l. [DOI] [PubMed] [Google Scholar]
  20. Neville L. F., Gnatt A., Loewenstein Y., Seidman S., Ehrlich G., Soreq H. Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE. EMBO J. 1992 Apr;11(4):1641–1649. doi: 10.1002/j.1460-2075.1992.tb05210.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nishikawa S., Sasaki F. Secretion of chondroitin sulfate from embryonic epidermal cells in Xenopus laevis. J Histochem Cytochem. 1993 Sep;41(9):1373–1381. doi: 10.1177/41.9.8354877. [DOI] [PubMed] [Google Scholar]
  22. Pavlath G. K., Rich K., Webster S. G., Blau H. M. Localization of muscle gene products in nuclear domains. Nature. 1989 Feb 9;337(6207):570–573. doi: 10.1038/337570a0. [DOI] [PubMed] [Google Scholar]
  23. Ralston E., Hall Z. W. Transfer of a protein encoded by a single nucleus to nearby nuclei in multinucleated myotubes. Science. 1989 Jun 2;244(4908):1066–1069. doi: 10.1126/science.2543074. [DOI] [PubMed] [Google Scholar]
  24. Salpeter M. M. Electron microscope radioautography as a quantitative tool in enzyme cytochemistry. I. The distribution of acetylcholinesterase at motor end plates of a vertebrate twitch muscle. J Cell Biol. 1967 Feb;32(2):379–389. doi: 10.1083/jcb.32.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schmidt E. V., Christoph G., Zeller R., Leder P. The cytomegalovirus enhancer: a pan-active control element in transgenic mice. Mol Cell Biol. 1990 Aug;10(8):4406–4411. doi: 10.1128/mcb.10.8.4406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schwartz S. P., Aisenthal L., Elisha Z., Oberman F., Yisraeli J. K. A 69-kDa RNA-binding protein from Xenopus oocytes recognizes a common motif in two vegetally localized maternal mRNAs. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11895–11899. doi: 10.1073/pnas.89.24.11895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Seidman S., Aziz-Aloya R. B., Timberg R., Loewenstein Y., Velan B., Shafferman A., Liao J., Norgaard-Pedersen B., Brodbeck U., Soreq H. Overexpressed monomeric human acetylcholinesterase induces subtle ultrastructural modifications in developing neuromuscular junctions of Xenopus laevis embryos. J Neurochem. 1994 May;62(5):1670–1681. doi: 10.1046/j.1471-4159.1994.62051670.x. [DOI] [PubMed] [Google Scholar]
  28. Sikorav J. L., Duval N., Anselmet A., Bon S., Krejci E., Legay C., Osterlund M., Reimund B., Massoulié J. Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ; primary structure of the precursor of the glycolipid-anchored dimeric form. EMBO J. 1988 Oct;7(10):2983–2993. doi: 10.1002/j.1460-2075.1988.tb03161.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Soreq H., Ben-Aziz R., Prody C. A., Seidman S., Gnatt A., Neville L., Lieman-Hurwitz J., Lev-Lehman E., Ginzberg D., Lipidot-Lifson Y. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9688–9692. doi: 10.1073/pnas.87.24.9688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Velan B., Kronman C., Grosfeld H., Leitner M., Gozes Y., Flashner Y., Sery T., Cohen S., Ben-Aziz R., Seidman S. Recombinant human acetylcholinesterase is secreted from transiently transfected 293 cells as a soluble globular enzyme. Cell Mol Neurobiol. 1991 Feb;11(1):143–156. doi: 10.1007/BF00712806. [DOI] [PubMed] [Google Scholar]
  31. Zakut H., Even L., Birkenfeld S., Malinger G., Zisling R., Soreq H. Modified properties of serum cholinesterases in primary carcinomas. Cancer. 1988 Feb 15;61(4):727–737. doi: 10.1002/1097-0142(19880215)61:4<727::aid-cncr2820610416>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  32. Zon L. I., Mather C., Burgess S., Bolce M. E., Harland R. M., Orkin S. H. Expression of GATA-binding proteins during embryonic development in Xenopus laevis. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10642–10646. doi: 10.1073/pnas.88.23.10642. [DOI] [PMC free article] [PubMed] [Google Scholar]