Precise switching of DNA replication timing in the GC content transition area in the human major histocompatibility complex (original) (raw)

Abstract

The human genome is composed of long-range G+C% (GC%) mosaic structures thought to be related to chromosome bands. We previously reported a boundary of megabase-sized GC% mosaic domains at the junction area between major histocompatibility complex (MHC) classes II and III, proposing it as a possible chromosome band boundary. DNA replication timing during the S phase is known to be correlated cytogenetically with chromosome band zones, and thus the band boundaries have been predicted to contain a switch point for DNA replication timing. In this study, to identify to the nucleotide sequence level the replication switch point during the S phase, we determined the precise DNA replication timing for MHC classes II and III, focusing on the junction area. To do this, we used PCR-based quantitation of nascent DNA obtained from synchronized human myeloid leukemia HL60 cells. The replication timing changed precisely in the boundary region with a 2-h difference between the two sides, supporting the prediction that this region may be a chromosome band boundary. We supposed that replication fork movement terminates (pauses) or significantly slows in the switch region, which contains dense Alu clusters; polypurine/polypyrimidine tracts; di-, tri-, or tetranucleotide repeats; and medium-reiteration-frequency sequences. Because the nascent DNA in the switch region was recovered at low efficiency, we investigated whether this region is associated with the nuclear scaffold and found three scaffold-associated regions in and around the switch region.

Full Text

The Full Text of this article is available as a PDF (319.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aota S., Ikemura T. Diversity in G + C content at the third position of codons in vertebrate genes and its cause. Nucleic Acids Res. 1986 Aug 26;14(16):6345–6355. doi: 10.1093/nar/14.16.6345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baran N., Lapidot A., Manor H. Formation of DNA triplexes accounts for arrests of DNA synthesis at d(TC)n and d(GA)n tracts. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):507–511. doi: 10.1073/pnas.88.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernardi G., Olofsson B., Filipski J., Zerial M., Salinas J., Cuny G., Meunier-Rotival M., Rodier F. The mosaic genome of warm-blooded vertebrates. Science. 1985 May 24;228(4702):953–958. doi: 10.1126/science.4001930. [DOI] [PubMed] [Google Scholar]
  4. Bernardi G. The isochore organization of the human genome and its evolutionary history--a review. Gene. 1993 Dec 15;135(1-2):57–66. doi: 10.1016/0378-1119(93)90049-9. [DOI] [PubMed] [Google Scholar]
  5. Bernardi G. The isochore organization of the human genome. Annu Rev Genet. 1989;23:637–661. doi: 10.1146/annurev.ge.23.120189.003225. [DOI] [PubMed] [Google Scholar]
  6. Biamonti G., Perini G., Weighardt F., Riva S., Giacca M., Norio P., Zentilin L., Diviacco S., Dimitrova D., Falaschi A. A human DNA replication origin: localization and transcriptional characterization. Chromosoma. 1992;102(1 Suppl):S24–S31. doi: 10.1007/BF02451782. [DOI] [PubMed] [Google Scholar]
  7. Bodnar J. W., Jones C. J., Coombs D. H., Pearson G. D., Ward D. C. Proteins tightly bound to HeLa cell DNA at nuclear matrix attachment sites. Mol Cell Biol. 1983 Sep;3(9):1567–1579. doi: 10.1128/mcb.3.9.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brinton B. T., Caddle M. S., Heintz N. H. Position and orientation-dependent effects of a eukaryotic Z-triplex DNA motif on episomal DNA replication in COS-7 cells. J Biol Chem. 1991 Mar 15;266(8):5153–5161. [PubMed] [Google Scholar]
  9. Brotherton T., Zenk D., Kahanic S., Reneker J. Avian nuclear matrix proteins bind very tightly to cellular DNA of the beta-globin gene enhancer in a tissue-specific fashion. Biochemistry. 1991 Jun 18;30(24):5845–5850. doi: 10.1021/bi00238a006. [DOI] [PubMed] [Google Scholar]
  10. Campbell R. D., Trowsdale J. Map of the human MHC. Immunol Today. 1993 Jul;14(7):349–352. doi: 10.1016/0167-5699(93)90234-C. [DOI] [PubMed] [Google Scholar]
  11. Contreas G., Giacca M., Falaschi A. Purification of BrdUrd-substituted DNA by immunoaffinity chromatography with anti-BrdUrd antibodies. Biotechniques. 1992 Jun;12(6):824–826. [PubMed] [Google Scholar]
  12. Craig J. M., Bickmore W. A. Chromosome bands--flavours to savour. Bioessays. 1993 May;15(5):349–354. doi: 10.1002/bies.950150510. [DOI] [PubMed] [Google Scholar]
  13. Cress A. E., Kurath K. M. Identification of attachment proteins for DNA in Chinese hamster ovary cells. J Biol Chem. 1988 Dec 25;263(36):19678–19683. [PubMed] [Google Scholar]
  14. Dayn A., Samadashwily G. M., Mirkin S. M. Intramolecular DNA triplexes: unusual sequence requirements and influence on DNA polymerization. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11406–11410. doi: 10.1073/pnas.89.23.11406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Diviacco S., Norio P., Zentilin L., Menzo S., Clementi M., Biamonti G., Riva S., Falaschi A., Giacca M. A novel procedure for quantitative polymerase chain reaction by coamplification of competitive templates. Gene. 1992 Dec 15;122(2):313–320. doi: 10.1016/0378-1119(92)90220-j. [DOI] [PubMed] [Google Scholar]
  16. Drouin R., Holmquist G. P., Richer C. L. High-resolution replication bands compared with morphologic G- and R-bands. Adv Hum Genet. 1994;22:47–115. doi: 10.1007/978-1-4757-9062-7_2. [DOI] [PubMed] [Google Scholar]
  17. Ellis N. A., Goodfellow P. J., Pym B., Smith M., Palmer M., Frischauf A. M., Goodfellow P. N. The pseudoautosomal boundary in man is defined by an Alu repeat sequence inserted on the Y chromosome. Nature. 1989 Jan 5;337(6202):81–84. doi: 10.1038/337081a0. [DOI] [PubMed] [Google Scholar]
  18. Ellis N., Goodfellow P. N. The mammalian pseudoautosomal region. Trends Genet. 1989 Dec;5(12):406–410. doi: 10.1016/0168-9525(89)90199-6. [DOI] [PubMed] [Google Scholar]
  19. Ellis N., Yen P., Neiswanger K., Shapiro L. J., Goodfellow P. N. Evolution of the pseudoautosomal boundary in Old World monkeys and great apes. Cell. 1990 Nov 30;63(5):977–986. doi: 10.1016/0092-8674(90)90501-5. [DOI] [PubMed] [Google Scholar]
  20. Falaschi A., Giacca M., Zentilin L., Norio P., Diviacco S., Dimitrova D., Kumar S., Tuteja R., Biamonti G., Perini G. Searching for replication origins in mammalian DNA. Gene. 1993 Dec 15;135(1-2):125–135. doi: 10.1016/0378-1119(93)90057-a. [DOI] [PubMed] [Google Scholar]
  21. Fukagawa T., Nakamura Y., Okumura K., Nogami M., Ando A., Inoko H., Saitou N., Ikemura T. Human pseudoautosomal boundary-like sequences: expression and involvement in evolutionary formation of the present-day pseudoautosomal boundary of human sex chromosomes. Hum Mol Genet. 1996 Jan;5(1):23–32. doi: 10.1093/hmg/5.1.23. [DOI] [PubMed] [Google Scholar]
  22. Fukagawa T., Sugaya K., Matsumoto K., Okumura K., Ando A., Inoko H., Ikemura T. A boundary of long-range G + C% mosaic domains in the human MHC locus: pseudoautosomal boundary-like sequence exists near the boundary. Genomics. 1995 Jan 1;25(1):184–191. doi: 10.1016/0888-7543(95)80124-5. [DOI] [PubMed] [Google Scholar]
  23. Gardiner K., Aissani B., Bernardi G. A compositional map of human chromosome 21. EMBO J. 1990 Jun;9(6):1853–1858. doi: 10.1002/j.1460-2075.1990.tb08310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gilliland G., Perrin S., Blanchard K., Bunn H. F. Analysis of cytokine mRNA and DNA: detection and quantitation by competitive polymerase chain reaction. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2725–2729. doi: 10.1073/pnas.87.7.2725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Goldman M. A., Holmquist G. P., Gray M. C., Caston L. A., Nag A. Replication timing of genes and middle repetitive sequences. Science. 1984 May 18;224(4650):686–692. doi: 10.1126/science.6719109. [DOI] [PubMed] [Google Scholar]
  26. Hidaka M., Akiyama M., Horiuchi T. A consensus sequence of three DNA replication terminus sites on the E. coli chromosome is highly homologous to the terR sites of the R6K plasmid. Cell. 1988 Nov 4;55(3):467–475. doi: 10.1016/0092-8674(88)90033-5. [DOI] [PubMed] [Google Scholar]
  27. Holmquist G. P. Chromosome bands, their chromatin flavors, and their functional features. Am J Hum Genet. 1992 Jul;51(1):17–37. [PMC free article] [PubMed] [Google Scholar]
  28. Holmquist G. P. Evolution of chromosome bands: molecular ecology of noncoding DNA. J Mol Evol. 1989 Jun;28(6):469–486. doi: 10.1007/BF02602928. [DOI] [PubMed] [Google Scholar]
  29. Holmquist G., Gray M., Porter T., Jordan J. Characterization of Giemsa dark- and light-band DNA. Cell. 1982 Nov;31(1):121–129. doi: 10.1016/0092-8674(82)90411-1. [DOI] [PubMed] [Google Scholar]
  30. Huberman J. A., Riggs A. D. On the mechanism of DNA replication in mammalian chromosomes. J Mol Biol. 1968 Mar 14;32(2):327–341. doi: 10.1016/0022-2836(68)90013-2. [DOI] [PubMed] [Google Scholar]
  31. Ikemura T., Aota S. Global variation in G+C content along vertebrate genome DNA. Possible correlation with chromosome band structures. J Mol Biol. 1988 Sep 5;203(1):1–13. doi: 10.1016/0022-2836(88)90086-1. [DOI] [PubMed] [Google Scholar]
  32. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985 Jan;2(1):13–34. doi: 10.1093/oxfordjournals.molbev.a040335. [DOI] [PubMed] [Google Scholar]
  33. Ikemura T., Wada K., Aota S. Giant G+C% mosaic structures of the human genome found by arrangement of GenBank human DNA sequences according to genetic positions. Genomics. 1990 Oct;8(2):207–216. doi: 10.1016/0888-7543(90)90273-w. [DOI] [PubMed] [Google Scholar]
  34. Ikemura T., Wada K. Evident diversity of codon usage patterns of human genes with respect to chromosome banding patterns and chromosome numbers; relation between nucleotide sequence data and cytogenetic data. Nucleic Acids Res. 1991 Aug 25;19(16):4333–4339. doi: 10.1093/nar/19.16.4333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Jackson D. A., Dickinson P., Cook P. R. The size of chromatin loops in HeLa cells. EMBO J. 1990 Feb;9(2):567–571. doi: 10.1002/j.1460-2075.1990.tb08144.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Jackson D. A., Yuan J., Cook P. R. A gentle method for preparing cyto- and nucleo-skeletons and associated chromatin. J Cell Sci. 1988 Jul;90(Pt 3):365–378. doi: 10.1242/jcs.90.3.365. [DOI] [PubMed] [Google Scholar]
  37. Jurka J. Novel families of interspersed repetitive elements from the human genome. Nucleic Acids Res. 1990 Jan 11;18(1):137–141. doi: 10.1093/nar/18.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Klevecz R. R., Keniston B. A. The temporal structure of S phase. Cell. 1975 Jun;5(2):195–203. doi: 10.1016/0092-8674(75)90027-6. [DOI] [PubMed] [Google Scholar]
  39. Kobayashi T., Hidaka M., Nishizawa M., Horiuchi T. Identification of a site required for DNA replication fork blocking activity in the rRNA gene cluster in Saccharomyces cerevisiae. Mol Gen Genet. 1992 Jun;233(3):355–362. doi: 10.1007/BF00265431. [DOI] [PubMed] [Google Scholar]
  40. Little R. D., Platt T. H., Schildkraut C. L. Initiation and termination of DNA replication in human rRNA genes. Mol Cell Biol. 1993 Oct;13(10):6600–6613. doi: 10.1128/mcb.13.10.6600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Matsumoto K., Arai M., Ishihara N., Ando A., Inoko H., Ikemura T. Cluster of fibronectin type III repeats found in the human major histocompatibility complex class III region shows the highest homology with the repeats in an extracellular matrix protein, tenascin. Genomics. 1992 Mar;12(3):485–491. doi: 10.1016/0888-7543(92)90438-x. [DOI] [PubMed] [Google Scholar]
  42. Nakamura H., Morita T., Sato C. Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp Cell Res. 1986 Aug;165(2):291–297. doi: 10.1016/0014-4827(86)90583-5. [DOI] [PubMed] [Google Scholar]
  43. Pedrali-Noy G., Spadari S., Miller-Faurès A., Miller A. O., Kruppa J., Koch G. Synchronization of HeLa cell cultures by inhibition of DNA polymerase alpha with aphidicolin. Nucleic Acids Res. 1980 Jan 25;8(2):377–387. doi: 10.1093/nar/8.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Pilia G., Little R. D., Aïssani B., Bernardi G., Schlessinger D. Isochores and CpG islands in YAC contigs in human Xq26.1-qter. Genomics. 1993 Aug;17(2):456–462. doi: 10.1006/geno.1993.1347. [DOI] [PubMed] [Google Scholar]
  45. Rao B. S. Pausing of simian virus 40 DNA replication fork movement in vivo by (dG-dA)n.(dT-dC)n tracts. Gene. 1994 Mar 25;140(2):233–237. doi: 10.1016/0378-1119(94)90549-5. [DOI] [PubMed] [Google Scholar]
  46. Razin S. V., Chernokhvostov V. V., Roodyn A. V., Zbarsky I. B., Georgiev G. P. Proteins tightly bound to DNA in the regions of DNA attachment to the skeletal structures of interphase nuclei and metaphase chromosomes. Cell. 1981 Nov;27(1 Pt 2):65–73. doi: 10.1016/0092-8674(81)90361-5. [DOI] [PubMed] [Google Scholar]
  47. Saccone S., De Sario A., Wiegant J., Raap A. K., Della Valle G., Bernardi G. Correlations between isochores and chromosomal bands in the human genome. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11929–11933. doi: 10.1073/pnas.90.24.11929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schirmbeck R., Deppert W. Structural topography of simian virus 40 DNA replication. J Virol. 1991 May;65(5):2578–2588. doi: 10.1128/jvi.65.5.2578-2588.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Senger G., Ragoussis J., Trowsdale J., Sheer D. Fine mapping of the human MHC class II region within chromosome band 6p21 and evaluation of probe ordering using interphase fluorescence in situ hybridization. Cytogenet Cell Genet. 1993;64(1):49–53. doi: 10.1159/000133559. [DOI] [PubMed] [Google Scholar]
  50. Sharp P. M., Lloyd A. T. Regional base composition variation along yeast chromosome III: evolution of chromosome primary structure. Nucleic Acids Res. 1993 Jan 25;21(2):179–183. doi: 10.1093/nar/21.2.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Siebert P. D., Larrick J. W. Competitive PCR. Nature. 1992 Oct 8;359(6395):557–558. doi: 10.1038/359557a0. [DOI] [PubMed] [Google Scholar]
  52. Spack E. G., Lewis E. D., Paradowski B., Schimke R. T., Jones P. P. Temporal order of DNA replication in the H-2 major histocompatibility complex of the mouse. Mol Cell Biol. 1992 Nov;12(11):5174–5188. doi: 10.1128/mcb.12.11.5174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Spring B., Fonatsch C., Müller C., Pawelec G., Kömpf J., Wernet P., Ziegler A. Refinement of HLA gene mapping with induced B-cell line mutants. Immunogenetics. 1985;21(3):277–291. doi: 10.1007/BF00375380. [DOI] [PubMed] [Google Scholar]
  54. Sugaya K., Fukagawa T., Matsumoto K., Mita K., Takahashi E., Ando A., Inoko H., Ikemura T. Three genes in the human MHC class III region near the junction with the class II: gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3. Genomics. 1994 Sep 15;23(2):408–419. doi: 10.1006/geno.1994.1517. [DOI] [PubMed] [Google Scholar]
  55. Tribioli C., Biamonti G., Giacca M., Colonna M., Riva S., Falaschi A. Characterization of human DNA sequences synthesized at the onset of S-phase. Nucleic Acids Res. 1987 Dec 23;15(24):10211–10232. doi: 10.1093/nar/15.24.10211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Yoon Y., Sanchez J. A., Brun C., Huberman J. A. Mapping of replication initiation sites in human ribosomal DNA by nascent-strand abundance analysis. Mol Cell Biol. 1995 May;15(5):2482–2489. doi: 10.1128/mcb.15.5.2482. [DOI] [PMC free article] [PubMed] [Google Scholar]