Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival (original) (raw)

Abstract

Hypoxia inducible factors HIF1α and HIF2α are important proteins involved in the regulation of the transcription of a variety of genes related to erythropoiesis, glycolysis and angiogenesis. Hypoxic stimulation results in rapid increase of the HIF1α and 2α protein levels, as a consequence of a redox-sensitive stabilization. The HIFαs enter the nucleus, heterodimerize with the HIF1β protein, and bind to DNA at the hypoxia response elements (HREs) of target genes. In this study we evaluated the immunohistochemical expression of these proteins in 108 tissue samples from non-small-cell lung cancer (NSCLC) and in normal lung tissues. Both proteins showed a mixed cytoplasmic/nuclear pattern of expression in cancer cells, tumoural vessels and tumour-infiltrating macrophages, as well as in areas of metaplasia, while normal lung components showed negative or very weak cytoplasmic staining. Positive HIF1α and HIF2α expression was noted in 68/108 (62%) and in 54/108 (50%) of cases respectively. Correlation analysis of HIF2α expression with HIF1α expression showed a significant association (P < 0.0001, r = 0.44). A strong association of the expression of both proteins with the angiogenic factors VEGF (P < 0.004), PD-ECGF (P < 0.003) and bFGF (P < 0.04) was noted. HIF1α correlated with the expression of bek-bFGF receptor expression (P = 0.01), while HIF2α was associated with intense VEGF/KDR-activated vascularization (P = 0.002). HIF2α protein was less frequently expressed in cases with a medium microvessel density (MVD); a high rate of expression was noted in cases with both low and high MVD (P = 0.006). Analysis of overall survival showed that HIF2α expression was related to poor outcome (P = 0.008), even in the group of patients with low MVD (P = 0.009). HIF1α expression was marginally associated with poor prognosis (P = 0.08). In multivariate analysis HIF2α expression was an independent prognostic indicator (P = 0.006, t-ratio 2.7). We conclude that HIF1α and HIF2α overexpression is a common event in NSCLC, which is related to the up-regulation of various angiogenic factors and with poor prognosis. Targeting the HIF pathway may prove of importance in the treatment of NSCLC. © 2001 Cancer Research Campaignhttp://www.bjcancer.com

Keywords: non-small-cell lung cancer, hypoxia inducible factors, angiogenesis, prognosis

Full Text

The Full Text of this article is available as a PDF (167.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebersold D. M., Burri P., Beer K. T., Laissue J., Djonov V., Greiner R. H., Semenza G. L. Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 2001 Apr 1;61(7):2911–2916. [PubMed] [Google Scholar]
  2. Birner P., Schindl M., Obermair A., Plank C., Breitenecker G., Oberhuber G. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res. 2000 Sep 1;60(17):4693–4696. [PubMed] [Google Scholar]
  3. Blancher C., Harris A. L. The molecular basis of the hypoxia response pathway: tumour hypoxia as a therapy target. Cancer Metastasis Rev. 1998 Jun;17(2):187–194. doi: 10.1023/a:1006002419244. [DOI] [PubMed] [Google Scholar]
  4. Bos R., Zhong H., Hanrahan C. F., Mommers E. C., Semenza G. L., Pinedo H. M., Abeloff M. D., Simons J. W., van Diest P. J., van der Wall E. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst. 2001 Feb 21;93(4):309–314. doi: 10.1093/jnci/93.4.309. [DOI] [PubMed] [Google Scholar]
  5. Brekken R. A., Huang X., King S. W., Thorpe P. E. Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res. 1998 May 1;58(9):1952–1959. [PubMed] [Google Scholar]
  6. Carmeliet P., Dor Y., Herbert J. M., Fukumura D., Brusselmans K., Dewerchin M., Neeman M., Bono F., Abramovitch R., Maxwell P. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998 Jul 30;394(6692):485–490. doi: 10.1038/28867. [DOI] [PubMed] [Google Scholar]
  7. Dong Z., Kumar R., Yang X., Fidler I. J. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell. 1997 Mar 21;88(6):801–810. doi: 10.1016/s0092-8674(00)81926-1. [DOI] [PubMed] [Google Scholar]
  8. Ebert B. L., Gleadle J. M., O'Rourke J. F., Bartlett S. M., Poulton J., Ratcliffe P. J. Isoenzyme-specific regulation of genes involved in energy metabolism by hypoxia: similarities with the regulation of erythropoietin. Biochem J. 1996 Feb 1;313(Pt 3):809–814. doi: 10.1042/bj3130809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ema M., Taya S., Yokotani N., Sogawa K., Matsuda Y., Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4273–4278. doi: 10.1073/pnas.94.9.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Faller D. V. Endothelial cell responses to hypoxic stress. Clin Exp Pharmacol Physiol. 1999 Jan;26(1):74–84. doi: 10.1046/j.1440-1681.1999.02992.x. [DOI] [PubMed] [Google Scholar]
  11. Feldser D., Agani F., Iyer N. V., Pak B., Ferreira G., Semenza G. L. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res. 1999 Aug 15;59(16):3915–3918. [PubMed] [Google Scholar]
  12. Forsythe J. A., Jiang B. H., Iyer N. V., Agani F., Leung S. W., Koos R. D., Semenza G. L. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996 Sep;16(9):4604–4613. doi: 10.1128/mcb.16.9.4604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gatenby R. A., Kessler H. B., Rosenblum J. S., Coia L. R., Moldofsky P. J., Hartz W. H., Broder G. J. Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys. 1988 May;14(5):831–838. doi: 10.1016/0360-3016(88)90002-8. [DOI] [PubMed] [Google Scholar]
  14. Giatromanolaki A., Koukourakis M. I., Kakolyris S., Turley H., O'Byrne K., Scott P. A., Pezzella F., Georgoulias V., Harris A. L., Gatter K. C. Vascular endothelial growth factor, wild-type p53, and angiogenesis in early operable non-small cell lung cancer. Clin Cancer Res. 1998 Dec;4(12):3017–3024. [PubMed] [Google Scholar]
  15. Giatromanolaki A., Koukourakis M. I., O'Byrne K., Kaklamanis L., Dicoglou C., Trichia E., Whitehouse R., Harris A. L., Gatter K. C. Non-small cell lung cancer: c-erbB-2 overexpression correlates with low angiogenesis and poor prognosis. Anticancer Res. 1996 Nov-Dec;16(6B):3819–3825. [PubMed] [Google Scholar]
  16. Giatromanolaki A., Koukourakis M. I., Sivridis E., O'Byrne K., Cox G., Thorpe P. E., Gatter K. C., Harris A. L. Coexpression of MUC1 glycoprotein with multiple angiogenic factors in non-small cell lung cancer suggests coactivation of angiogenic and migration pathways. Clin Cancer Res. 2000 May;6(5):1917–1921. [PubMed] [Google Scholar]
  17. Giatromanolaki A., Sivridis E., Koukourakis M. I., Georgoulias V., Gatter K. C., Harris A. L. Intratumoral angiogenesis: a new prognostic indicator for stage I endometrial adenocarcinomas? Oncol Res. 1999;11(4):205–212. [PubMed] [Google Scholar]
  18. Griffiths L., Dachs G. U., Bicknell R., Harris A. L., Stratford I. J. The influence of oxygen tension and pH on the expression of platelet-derived endothelial cell growth factor/thymidine phosphorylase in human breast tumor cells grown in vitro and in vivo. Cancer Res. 1997 Feb 15;57(4):570–572. [PubMed] [Google Scholar]
  19. Gu Y. Z., Moran S. M., Hogenesch J. B., Wartman L., Bradfield C. A. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr. 1998;7(3):205–213. [PMC free article] [PubMed] [Google Scholar]
  20. Göpfert T., Gess B., Eckardt K. U., Kurtz A. Hypoxia signalling in the control of erythropoietin gene expression in rat hepatocytes. J Cell Physiol. 1996 Aug;168(2):354–361. doi: 10.1002/(SICI)1097-4652(199608)168:2<354::AID-JCP14>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  21. Huang L. E., Arany Z., Livingston D. M., Bunn H. F. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem. 1996 Dec 13;271(50):32253–32259. doi: 10.1074/jbc.271.50.32253. [DOI] [PubMed] [Google Scholar]
  22. Huang L. E., Gu J., Schau M., Bunn H. F. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7987–7992. doi: 10.1073/pnas.95.14.7987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jiang B. H., Agani F., Passaniti A., Semenza G. L. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 1997 Dec 1;57(23):5328–5335. [PubMed] [Google Scholar]
  24. Koukourakis M. I., Giatromanolaki A., Kakolyris S., O'Byrne K. J., Apostolikas N., Skarlatos J., Gatter K. C., Harris A. L. Different patterns of stromal and cancer cell thymidine phosphorylase reactivity in non-small-cell lung cancer: impact on tumour neoangiogenesis and survival. Br J Cancer. 1998 May;77(10):1696–1703. doi: 10.1038/bjc.1998.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Koukourakis M. I., Giatromanolaki A., O'Byrne K. J., Comley M., Whitehouse R. M., Talbot D. C., Gatter K. C., Harris A. L. Platelet-derived endothelial cell growth factor expression correlates with tumour angiogenesis and prognosis in non-small-cell lung cancer. Br J Cancer. 1997;75(4):477–481. doi: 10.1038/bjc.1997.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Koukourakis M. I., Giatromanolaki A., O'Byrne K. J., Cox J., Krammer B., Gatter K. C., Harris A. L. bcl-2 and c-erbB-2 proteins are involved in the regulation of VEGF and of thymidine phosphorylase angiogenic activity in non-small-cell lung cancer. Clin Exp Metastasis. 1999;17(7):545–554. doi: 10.1023/a:1006780710148. [DOI] [PubMed] [Google Scholar]
  27. Koukourakis M. I., Giatromanolaki A., O'Byrne K. J., Whitehouse R. M., Talbot D. C., Gatter K. C., Harris A. L. Potential role of bcl-2 as a suppressor of tumour angiogenesis in non-small-cell lung cancer. Int J Cancer. 1997 Dec 19;74(6):565–570. doi: 10.1002/(sici)1097-0215(19971219)74:6<565::aid-ijc1>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  28. Koukourakis M. I., Giatromanolaki A., Thorpe P. E., Brekken R. A., Sivridis E., Kakolyris S., Georgoulias V., Gatter K. C., Harris A. L. Vascular endothelial growth factor/KDR activated microvessel density versus CD31 standard microvessel density in non-small cell lung cancer. Cancer Res. 2000 Jun 1;60(11):3088–3095. [PubMed] [Google Scholar]
  29. Maxwell P. H., Dachs G. U., Gleadle J. M., Nicholls L. G., Harris A. L., Stratford I. J., Hankinson O., Pugh C. W., Ratcliffe P. J. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):8104–8109. doi: 10.1073/pnas.94.15.8104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Maxwell P. H., Wiesener M. S., Chang G. W., Clifford S. C., Vaux E. C., Cockman M. E., Wykoff C. C., Pugh C. W., Maher E. R., Ratcliffe P. J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999 May 20;399(6733):271–275. doi: 10.1038/20459. [DOI] [PubMed] [Google Scholar]
  31. Mazure N. M., Chen E. Y., Laderoute K. R., Giaccia A. J. Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood. 1997 Nov 1;90(9):3322–3331. [PubMed] [Google Scholar]
  32. Norris M. L., Millhorn D. E. Hypoxia-induced protein binding to O2-responsive sequences on the tyrosine hydroxylase gene. J Biol Chem. 1995 Oct 6;270(40):23774–23779. doi: 10.1074/jbc.270.40.23774. [DOI] [PubMed] [Google Scholar]
  33. O'Toole E. A., Marinkovich M. P., Peavey C. L., Amieva M. R., Furthmayr H., Mustoe T. A., Woodley D. T. Hypoxia increases human keratinocyte motility on connective tissue. J Clin Invest. 1997 Dec 1;100(11):2881–2891. doi: 10.1172/JCI119837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Semenza G. L., Nejfelt M. K., Chi S. M., Antonarakis S. E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5680–5684. doi: 10.1073/pnas.88.13.5680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Semenza G. L., Wang G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992 Dec;12(12):5447–5454. doi: 10.1128/mcb.12.12.5447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Takagi H., King G. L., Aiello L. P. Hypoxia upregulates glucose transport activity through an adenosine-mediated increase of GLUT1 expression in retinal capillary endothelial cells. Diabetes. 1998 Sep;47(9):1480–1488. doi: 10.2337/diabetes.47.9.1480. [DOI] [PubMed] [Google Scholar]
  37. Tian H., McKnight S. L., Russell D. W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997 Jan 1;11(1):72–82. doi: 10.1101/gad.11.1.72. [DOI] [PubMed] [Google Scholar]
  38. Tungekar M. F., Gatter K. C., Dunnill M. S., Mason D. Y. Ki-67 immunostaining and survival in operable lung cancer. Histopathology. 1991 Dec;19(6):545–550. doi: 10.1111/j.1365-2559.1991.tb01503.x. [DOI] [PubMed] [Google Scholar]
  39. Volm M., Koomägi R. Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res. 2000 May-Jun;20(3A):1527–1533. [PubMed] [Google Scholar]
  40. Wiesener M. S., Turley H., Allen W. E., Willam C., Eckardt K. U., Talks K. L., Wood S. M., Gatter K. C., Harris A. L., Pugh C. W. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood. 1998 Oct 1;92(7):2260–2268. [PubMed] [Google Scholar]
  41. Zagzag D., Zhong H., Scalzitti J. M., Laughner E., Simons J. W., Semenza G. L. Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer. 2000 Jun 1;88(11):2606–2618. [PubMed] [Google Scholar]
  42. Zhong H., De Marzo A. M., Laughner E., Lim M., Hilton D. A., Zagzag D., Buechler P., Isaacs W. B., Semenza G. L., Simons J. W. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999 Nov 15;59(22):5830–5835. [PubMed] [Google Scholar]
  43. Zundel W., Schindler C., Haas-Kogan D., Koong A., Kaper F., Chen E., Gottschalk A. R., Ryan H. E., Johnson R. S., Jefferson A. B. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000 Feb 15;14(4):391–396. [PMC free article] [PubMed] [Google Scholar]
  44. de Potter C. R., Eeckhout I., Schelfhout A. M., Geerts M. L., Roels H. J. Keratinocyte induced chemotaxis in the pathogenesis of Paget's disease of the breast. Histopathology. 1994 Apr;24(4):349–356. doi: 10.1111/j.1365-2559.1994.tb00536.x. [DOI] [PubMed] [Google Scholar]