Down-regulation of Fas-L in glioma cells by ribozyme reduces cell apoptosis, tumour-infiltrating cells, and liver damage but accelerates tumour formation in nude mice (original) (raw)

Abstract

Fas-L (CD95L, APO-1L) expresses in a variety of tumours and has been proposed to play a role in tumour formation and metastasis. The contribution of Fas-L to tumour growth, however, is not conclusive especially in systems using cells with over-expressed Fas-L. In this study we down-regulated the expression o Fas-L in human glioma cells by a hammerhead ribozyme (Fas-Lribozyme) targeting against Fas-L mRNA. Fas-Lribozyme-carrying cells exhibited slightly enhanced growth rate and less degree of spontaneous apoptosis in vitro as compared with vector controls. In nude mice, Fas-Lribozyme-carrying cells grew faster with lesser apoptosis, formed bigger tumour with significantly fewer infiltrating cells in the tumour area, and triggered relatively milder tumour-associated liver damage than vector controls did. Thus, down-regulation of Fas-L not only improved viability of glioma cells but also reduces local immune responses that may consequently affect tumour formation. Taken together, our findings imply that endogenous expression of Fas-L in malignant cells is not always growth promoting. © 2001 Cancer Research Campaign http://www.bjcancer.com

Keywords: Fas-L, ribozyme, tumorigenesis, glioma

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderson M. R., Armitage R. J., Maraskovsky E., Tough T. W., Roux E., Schooley K., Ramsdell F., Lynch D. H. Fas transduces activation signals in normal human T lymphocytes. J Exp Med. 1993 Dec 1;178(6):2231–2235. doi: 10.1084/jem.178.6.2231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alderson M. R., Tough T. W., Davis-Smith T., Braddy S., Falk B., Schooley K. A., Goodwin R. G., Smith C. A., Ramsdell F., Lynch D. H. Fas ligand mediates activation-induced cell death in human T lymphocytes. J Exp Med. 1995 Jan 1;181(1):71–77. doi: 10.1084/jem.181.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arai H., Gordon D., Nabel E. G., Nabel G. J. Gene transfer of Fas ligand induces tumor regression in vivo. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13862–13867. doi: 10.1073/pnas.94.25.13862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birikh K. R., Heaton P. A., Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem. 1997 Apr 1;245(1):1–16. doi: 10.1111/j.1432-1033.1997.t01-3-00001.x. [DOI] [PubMed] [Google Scholar]
  5. Chang M. Y., Won S. J., Liu H. S. A ribozyme specifically suppresses transformation and tumorigenicity of Ha-ras-oncogene-transformed NIH/3T3 cell lines. J Cancer Res Clin Oncol. 1997;123(2):91–99. doi: 10.1007/BF01269886. [DOI] [PubMed] [Google Scholar]
  6. Chattergoon M. A., Kim J. J., Yang J. S., Robinson T. M., Lee D. J., Dentchev T., Wilson D. M., Ayyavoo V., Weiner D. B. Targeted antigen delivery to antigen-presenting cells including dendritic cells by engineered Fas-mediated apoptosis. Nat Biotechnol. 2000 Sep;18(9):974–979. doi: 10.1038/79470. [DOI] [PubMed] [Google Scholar]
  7. Chen J. J., Sun Y., Nabel G. J. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science. 1998 Nov 27;282(5394):1714–1717. doi: 10.1126/science.282.5394.1714. [DOI] [PubMed] [Google Scholar]
  8. Chervonsky A. V., Wang Y., Wong F. S., Visintin I., Flavell R. A., Janeway C. A., Jr, Matis L. A. The role of Fas in autoimmune diabetes. Cell. 1997 Apr 4;89(1):17–24. doi: 10.1016/s0092-8674(00)80178-6. [DOI] [PubMed] [Google Scholar]
  9. Cleary M. L., Smith S. D., Sklar J. Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell. 1986 Oct 10;47(1):19–28. doi: 10.1016/0092-8674(86)90362-4. [DOI] [PubMed] [Google Scholar]
  10. Du Z., Ricordi C., Podack E., Pastori R. L. A hammerhead ribozyme that cleaves perforin and fas-ligand RNAs in vitro. Biochem Biophys Res Commun. 1996 Sep 24;226(3):595–600. doi: 10.1006/bbrc.1996.1401. [DOI] [PubMed] [Google Scholar]
  11. Gratas C., Tohma Y., Van Meir E. G., Klein M., Tenan M., Ishii N., Tachibana O., Kleihues P., Ohgaki H. Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol. 1997 Jul;7(3):863–869. doi: 10.1111/j.1750-3639.1997.tb00889.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hahne M., Rimoldi D., Schröter M., Romero P., Schreier M., French L. E., Schneider P., Bornand T., Fontana A., Lienard D. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science. 1996 Nov 22;274(5291):1363–1366. doi: 10.1126/science.274.5291.1363. [DOI] [PubMed] [Google Scholar]
  13. Horino K., Nishiura H., Ohsako T., Shibuya Y., Hiraoka T., Kitamura N., Yamamoto T. A monocyte chemotactic factor, S19 ribosomal protein dimer, in phagocytic clearance of apoptotic cells. Lab Invest. 1998 May;78(5):603–617. [PubMed] [Google Scholar]
  14. Itoh N., Yonehara S., Ishii A., Yonehara M., Mizushima S., Sameshima M., Hase A., Seto Y., Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991 Jul 26;66(2):233–243. doi: 10.1016/0092-8674(91)90614-5. [DOI] [PubMed] [Google Scholar]
  15. Nagata S. Apoptosis by death factor. Cell. 1997 Feb 7;88(3):355–365. doi: 10.1016/s0092-8674(00)81874-7. [DOI] [PubMed] [Google Scholar]
  16. Ogasawara J., Watanabe-Fukunaga R., Adachi M., Matsuzawa A., Kasugai T., Kitamura Y., Itoh N., Suda T., Nagata S. Lethal effect of the anti-Fas antibody in mice. Nature. 1993 Aug 26;364(6440):806–809. doi: 10.1038/364806a0. [DOI] [PubMed] [Google Scholar]
  17. Owen-Schaub L. B., Radinsky R., Kruzel E., Berry K., Yonehara S. Anti-Fas on nonhematopoietic tumors: levels of Fas/APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res. 1994 Mar 15;54(6):1580–1586. [PubMed] [Google Scholar]
  18. Poeschla E., Wong-Staal F. Antiviral and anticancer ribozymes. Curr Opin Oncol. 1994 Nov;6(6):601–606. doi: 10.1097/00001622-199411000-00012. [DOI] [PubMed] [Google Scholar]
  19. Reid S., Cross R., Snow E. C. Combined Hoechst 33342 and merocyanine 540 staining to examine murine B cell cycle stage, viability and apoptosis. J Immunol Methods. 1996 Jun 10;192(1-2):43–54. doi: 10.1016/0022-1759(96)00004-x. [DOI] [PubMed] [Google Scholar]
  20. Rensing-Ehl A., Frei K., Flury R., Matiba B., Mariani S. M., Weller M., Aebischer P., Krammer P. H., Fontana A. Local Fas/APO-1 (CD95) ligand-mediated tumor cell killing in vivo. Eur J Immunol. 1995 Aug;25(8):2253–2258. doi: 10.1002/eji.1830250821. [DOI] [PubMed] [Google Scholar]
  21. Saas P., Walker P. R., Hahne M., Quiquerez A. L., Schnuriger V., Perrin G., French L., Van Meir E. G., de Tribolet N., Tschopp J. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest. 1997 Mar 15;99(6):1173–1178. doi: 10.1172/JCI119273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sato T., Irie S., Kitada S., Reed J. C. FAP-1: a protein tyrosine phosphatase that associates with Fas. Science. 1995 Apr 21;268(5209):411–415. doi: 10.1126/science.7536343. [DOI] [PubMed] [Google Scholar]
  23. Scanlon K. J., Jiao L., Funato T., Wang W., Tone T., Rossi J. J., Kashani-Sabet M. Ribozyme-mediated cleavage of c-fos mRNA reduces gene expression of DNA synthesis enzymes and metallothionein. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10591–10595. doi: 10.1073/pnas.88.23.10591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Seino K., Kayagaki N., Tsukada N., Fukao K., Yagita H., Okumura K. Transplantation of CD95 ligand-expressing grafts: influence of transplantation site and difficulty in protecting allo- and xenografts. Transplantation. 1997 Oct 15;64(7):1050–1054. doi: 10.1097/00007890-199710150-00018. [DOI] [PubMed] [Google Scholar]
  25. Shinohara H., Yagita H., Ikawa Y., Oyaizu N. Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation. Cancer Res. 2000 Mar 15;60(6):1766–1772. [PubMed] [Google Scholar]
  26. Shinoura N., Yoshida Y., Sadata A., Hanada K. I., Yamamoto S., Kirino T., Asai A., Hamada H. Apoptosis by retrovirus- and adenovirus-mediated gene transfer of Fas ligand to glioma cells: implications for gene therapy. Hum Gene Ther. 1998 Sep 20;9(14):1983–1993. doi: 10.1089/hum.1998.9.14-1983. [DOI] [PubMed] [Google Scholar]
  27. Shiraki K., Tsuji N., Shioda T., Isselbacher K. J., Takahashi H. Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6420–6425. doi: 10.1073/pnas.94.12.6420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Strand S., Hofmann W. J., Hug H., Müller M., Otto G., Strand D., Mariani S. M., Stremmel W., Krammer P. H., Galle P. R. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells--a mechanism of immune evasion? Nat Med. 1996 Dec;2(12):1361–1366. doi: 10.1038/nm1296-1361. [DOI] [PubMed] [Google Scholar]
  29. Suzuki I., Fink P. J. Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. J Exp Med. 1998 Jan 5;187(1):123–128. doi: 10.1084/jem.187.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takahashi T., Tanaka M., Inazawa J., Abe T., Suda T., Nagata S. Human Fas ligand: gene structure, chromosomal location and species specificity. Int Immunol. 1994 Oct;6(10):1567–1574. doi: 10.1093/intimm/6.10.1567. [DOI] [PubMed] [Google Scholar]
  31. Van Parijs L., Abbas A. K. Homeostasis and self-tolerance in the immune system: turning lymphocytes off. Science. 1998 Apr 10;280(5361):243–248. doi: 10.1126/science.280.5361.243. [DOI] [PubMed] [Google Scholar]
  32. Walker P. R., Saas P., Dietrich P. Y. Tumor expression of Fas ligand (CD95L) and the consequences. Curr Opin Immunol. 1998 Oct;10(5):564–572. doi: 10.1016/s0952-7915(98)80225-2. [DOI] [PubMed] [Google Scholar]
  33. Weller M., Frei K., Groscurth P., Krammer P. H., Yonekawa Y., Fontana A. Anti-Fas/APO-1 antibody-mediated apoptosis of cultured human glioma cells. Induction and modulation of sensitivity by cytokines. J Clin Invest. 1994 Sep;94(3):954–964. doi: 10.1172/JCI117462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yang B. C., Wang Y. S., Liu H. S., Lin S. J. Ras signaling is involved in the expression of Fas-L in glioma. Lab Invest. 2000 Apr;80(4):529–537. doi: 10.1038/labinvest.3780058. [DOI] [PubMed] [Google Scholar]
  35. Yang B. C., Wang Y. S., Wang C. H., Lin H. H., Tang M. J., Yang T. L. Transient apoptosis elicited by insulin in serum-starved glioma cells involves Fas/Fas-L and Bcl-2. Cell Biol Int. 1999;23(8):533–540. doi: 10.1006/cbir.1999.0408. [DOI] [PubMed] [Google Scholar]
  36. Yang B. C., Yang T. L. Differential expression of cytokine genes and apoptosis in glioma cell lines upon exposure to bacteria and lipopolysaccharides. J Microbiol Immunol Infect. 1998 Jun;31(2):95–100. [PubMed] [Google Scholar]
  37. Zeytun A., Nagarkatti M., Nagarkatti P. S. Growth of FasL-bearing tumor cells in syngeneic murine host induces apoptosis and toxicity in Fas(+) organs. Blood. 2000 Mar 15;95(6):2111–2117. [PubMed] [Google Scholar]