Butanol Production by a Butanol-Tolerant Strain of Clostridium acetobutylicum in Extruded Corn Broth (original) (raw)

Abstract

By employing serial enrichment, a derivative of Clostridium acetobutylicum ATCC 824 was obtained which grew at concentrations of butanol that prevented growth of the wild-type strain. The parent strain demonstrated a negative growth rate at 15 g of butanol/liter, whereas the SA-1 mutant was still able to grow at a rate which was 66% of the uninhibited control. SA-1 produced consistently higher concentrations of butanol (from 5 to 14%) and lower concentrations of acetone (12.5 to 40%) than the wild-type strain in 4 to 20% extruded corn broth (ECB). Although the highest concentration of butanol was produced by SA-1 and the wild-type strain in 14% ECB, the best solvent ratio with respect to optimizing butanol and decreasing acetone occurred between 4 and 8% ECB for SA-1. SA-1 demonstrated higher conversion efficiency to butanol than the wild-type strain at every concentration of ECB tested. Characterization of the wild-type and SA-1 strain in 6% ECB demonstrated the superiority of the latter in terms of growth rate, time of onset of butanol production, carbohydrate utilization, pH resistance, and final butanol concentration in the fermentation broth.

966

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allcock E. R., Woods D. R. Carboxymethyl cellulase and cellobiase production by Clostridium acetobutylicum in an industrial fermentation medium. Appl Environ Microbiol. 1981 Feb;41(2):539–541. doi: 10.1128/aem.41.2.539-541.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barber J. M., Robb F. T., Webster J. R., Woods D. R. Bacteriocin production by Clostridium acetobutylicum in an industrial fermentation process. Appl Environ Microbiol. 1979 Mar;37(3):433–437. doi: 10.1128/aem.37.3.433-437.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davies R., Stephenson M. Studies on the acetone-butyl alcohol fermentation: Nutritional and other factors involved in the preparation of active suspensions of Cl. acetobutylicum (Weizmann). Biochem J. 1941 Dec;35(12):1320–1331. doi: 10.1042/bj0351320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gottschalk G., Bahl H. Feasible improvements of the butanol production by Clostridium acetobutylicum. Basic Life Sci. 1981;18:463–471. doi: 10.1007/978-1-4684-3980-9_27. [DOI] [PubMed] [Google Scholar]
  5. Herrero A. A., Gomez R. F. Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol. 1980 Sep;40(3):571–577. doi: 10.1128/aem.40.3.571-577.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ionesco H., Wolff A., Sebald Production induite de bactériocine et d'un bactériophage par la souche BP6K-N-5 de Clostridium perfringens. Ann Microbiol (Paris) 1974 Oct-Nov;125B(3):335–346. [PubMed] [Google Scholar]
  7. Jones D. T., van der Westhuizen A., Long S., Allcock E. R., Reid S. J., Woods D. R. Solvent Production and Morphological Changes in Clostridium acetobutylicum. Appl Environ Microbiol. 1982 Jun;43(6):1434–1439. doi: 10.1128/aem.43.6.1434-1439.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]