Overlapping Antisense Transcription in the Human Genome (original) (raw)

Abstract

Accumulating evidence indicates an important role for non-coding RNA molecules in eukaryotic cell regulation. A small number of coding and non-coding overlapping antisense transcripts (OATs) in eukaryotes have been reported, some of which regulate expression of the corresponding sense transcript. The prevalence of this phenomenon is unknown, but there may be an enrichment of such transcripts at imprinted gene loci. Taking a bioinformatics approach, we systematically searched a human mRNA database (RefSeq) for complementary regions that might facilitate pairing with other transcripts. We report 56 pairs of overlapping transcripts, in which each member of the pair is transcribed from the same locus. This allows us to make an estimate of 1000 for the minimum number of such transcript pairs in the entire human genome. This is a surprisingly large number of overlapping gene pairs and, clearly, some of the overlaps may not be functionally significant. Nonetheless, this may indicate an important general role for overlapping antisense control in gene regulation. EST databases were also investigated in order to address the prevalence of cases of imprinted genes with associated non-coding overlapping, antisense transcripts. However, EST databases were found to be completely inappropriate for this purpose.

Full Text

The Full Text of this article is available as a PDF (165.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adoutte A. Evolutionary biology. Small but mighty timekeepers. Nature. 2000 Nov 2;408(6808):37–38. doi: 10.1038/35040669. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Blagitko N., Schulz U., Schinzel A. A., Ropers H. H., Kalscheuer V. M. gamma2-COP, a novel imprinted gene on chromosome 7q32, defines a new imprinting cluster in the human genome. Hum Mol Genet. 1999 Dec;8(13):2387–2396. doi: 10.1093/hmg/8.13.2387. [DOI] [PubMed] [Google Scholar]
  4. Eddy S. R. Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2001 Dec;2(12):919–929. doi: 10.1038/35103511. [DOI] [PubMed] [Google Scholar]
  5. Gemünd C., Ramu C., Altenberg-Greulich B., Gibson T. J. Gene2EST: a BLAST2 server for searching expressed sequence tag (EST) databases with eukaryotic gene-sized queries. Nucleic Acids Res. 2001 Mar 15;29(6):1272–1277. doi: 10.1093/nar/29.6.1272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gribnau J., Diderich K., Pruzina S., Calzolari R., Fraser P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. Mol Cell. 2000 Feb;5(2):377–386. doi: 10.1016/s1097-2765(00)80432-3. [DOI] [PubMed] [Google Scholar]
  7. Harborth J., Elbashir S. M., Bechert K., Tuschl T., Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci. 2001 Dec;114(Pt 24):4557–4565. doi: 10.1242/jcs.114.24.4557. [DOI] [PubMed] [Google Scholar]
  8. Heard E., Lovell-Badge R., Avner P. Anti-Xistentialism. Nat Genet. 1999 Apr;21(4):343–344. doi: 10.1038/7661. [DOI] [PubMed] [Google Scholar]
  9. Kiss T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 2001 Jul 16;20(14):3617–3622. doi: 10.1093/emboj/20.14.3617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knee R., Murphy P. R. Regulation of gene expression by natural antisense RNA transcripts. Neurochem Int. 1997 Sep;31(3):379–392. doi: 10.1016/s0197-0186(96)00108-8. [DOI] [PubMed] [Google Scholar]
  11. Kumar M., Carmichael G. G. Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev. 1998 Dec;62(4):1415–1434. doi: 10.1128/mmbr.62.4.1415-1434.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lehner Ben, Williams Gary, Campbell R. Duncan, Sanderson Christopher M. Antisense transcripts in the human genome. Trends Genet. 2002 Feb;18(2):63–65. doi: 10.1016/s0168-9525(02)02598-2. [DOI] [PubMed] [Google Scholar]
  13. Li A. W., Murphy P. R. Expression of alternatively spliced FGF-2 antisense RNA transcripts in the central nervous system: regulation of FGF-2 mRNA translation. Mol Cell Endocrinol. 2000 Apr 25;162(1-2):69–78. doi: 10.1016/s0303-7207(00)00209-4. [DOI] [PubMed] [Google Scholar]
  14. Li A. W., Seyoum G., Shiu R. P., Murphy P. R. Expression of the rat BFGF antisense RNA transcript is tissue-specific and developmentally regulated. Mol Cell Endocrinol. 1996 Apr 19;118(1-2):113–123. doi: 10.1016/0303-7207(96)03772-0. [DOI] [PubMed] [Google Scholar]
  15. Li A. W., Too C. K., Knee R., Wilkinson M., Murphy P. R. FGF-2 antisense RNA encodes a nuclear protein with MutT-like antimutator activity. Mol Cell Endocrinol. 1997 Oct 20;133(2):177–182. doi: 10.1016/s0303-7207(97)00148-2. [DOI] [PubMed] [Google Scholar]
  16. Lukowiak A. A., Narayanan A., Li Z. H., Terns R. M., Terns M. P. The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus. RNA. 2001 Dec;7(12):1833–1844. [PMC free article] [PubMed] [Google Scholar]
  17. Mattick J. S. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2001 Nov;2(11):986–991. doi: 10.1093/embo-reports/kve230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McVean G. T., Hurst L. D., Moore T. Genomic evolution in mice and men: imprinted genes have little intronic content. Bioessays. 1996 Sep;18(9):773–775. doi: 10.1002/bies.950180913. [DOI] [PubMed] [Google Scholar]
  19. Moore T., Constancia M., Zubair M., Bailleul B., Feil R., Sasaki H., Reik W. Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12509–12514. doi: 10.1073/pnas.94.23.12509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moore T. Genetic conflict, genomic imprinting and establishment of the epigenotype in relation to growth. Reproduction. 2001 Aug;122(2):185–193. doi: 10.1530/rep.0.1220185. [DOI] [PubMed] [Google Scholar]
  21. Neumann B., Kubicka P., Barlow D. P. Characteristics of imprinted genes. Nat Genet. 1995 Jan;9(1):12–13. doi: 10.1038/ng0195-12. [DOI] [PubMed] [Google Scholar]
  22. Okutsu T., Kuroiwa Y., Kagitani F., Kai M., Aisaka K., Tsutsumi O., Kaneko Y., Yokomori K., Surani M. A., Kohda T. Expression and imprinting status of human PEG8/IGF2AS, a paternally expressed antisense transcript from the IGF2 locus, in Wilms' tumors. J Biochem. 2000 Mar;127(3):475–483. doi: 10.1093/oxfordjournals.jbchem.a022630. [DOI] [PubMed] [Google Scholar]
  23. Pruitt K. D., Maglott D. R. RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res. 2001 Jan 1;29(1):137–140. doi: 10.1093/nar/29.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sleutels F., Barlow D. P., Lyle R. The uniqueness of the imprinting mechanism. Curr Opin Genet Dev. 2000 Apr;10(2):229–233. doi: 10.1016/s0959-437x(00)00062-9. [DOI] [PubMed] [Google Scholar]
  25. Sutterluety H., Bartl S., Doetzlhofer A., Khier H., Wintersberger E., Seiser C. Growth-regulated antisense transcription of the mouse thymidine kinase gene. Nucleic Acids Res. 1998 Nov 1;26(21):4989–4995. doi: 10.1093/nar/26.21.4989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Valadkhan S., Manley J. L. Splicing-related catalysis by protein-free snRNAs. Nature. 2001 Oct 18;413(6857):701–707. doi: 10.1038/35099500. [DOI] [PubMed] [Google Scholar]
  27. Vanhée-Brossollet C., Vaquero C. Do natural antisense transcripts make sense in eukaryotes? Gene. 1998 Apr 28;211(1):1–9. doi: 10.1016/s0378-1119(98)00093-6. [DOI] [PubMed] [Google Scholar]
  28. Wagner E. Gerhart H., Altuvia Shoshy, Romby Pascale. Antisense RNAs in bacteria and their genetic elements. Adv Genet. 2002;46:361–398. doi: 10.1016/s0065-2660(02)46013-0. [DOI] [PubMed] [Google Scholar]
  29. Wutz A., Smrzka O. W., Schweifer N., Schellander K., Wagner E. F., Barlow D. P. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature. 1997 Oct 16;389(6652):745–749. doi: 10.1038/39631. [DOI] [PubMed] [Google Scholar]