Direct inactivation of viruses by human granulocyte defensins (original) (raw)

Abstract

Human neutrophils contain a family of microbicidal peptides known as defensins. One of these defensins, human neutrophil peptide (HNP)-1, was purified, and its ability to directly inactivate several viruses was extensively tested. Herpes simplex virus (HSV) types 1 and 2, cytomegalovirus, vesicular stomatitis virus, and influenza virus A/WSN were inactivated by incubation with HNP-1. Two nonenveloped viruses, echovirus type 11 and reovirus type 3, were resistant to inactivation. Purified homologous peptides HNP-2 and HNP-3 were found to have HSV-1-neutralizing activities approximately equal to that of HNP-1. Inactivation of HSV-1 by HNP-1 depended on the time, temperature, and pH of incubation. Antiviral activity was abrogated by low temperature or prior reduction and alkylation of the defensins. Addition of serum or serum albumin to the incubation mixtures inhibited neutralization of HSV-1 by HNP-1. We used density gradient sedimentation techniques to demonstrate that HNP-1 bound to HSV-1 in a temperature-dependent manner. We speculate that binding of defensin peptides to certain viruses may impair their ability to infect cells.

1068

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison A. C. Interactions of antibodies, complement components and various cell types in immunity against viruses and pyogenic bacteria. Transplant Rev. 1974;19(0):3–55. doi: 10.1111/j.1600-065x.1974.tb00127.x. [DOI] [PubMed] [Google Scholar]
  2. Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
  3. Berkow R. L., Baehner R. L. Volume-dependent human blood polymorphonuclear leukocyte heterogeneity demonstrated with counterflow centrifugal elutriation. Blood. 1985 Jan;65(1):71–78. [PubMed] [Google Scholar]
  4. Elsbach P., Weiss J. A reevaluation of the roles of the O2-dependent and O2-independent microbicidal systems of phagocytes. Rev Infect Dis. 1983 Sep-Oct;5(5):843–853. doi: 10.1093/clinids/5.5.843. [DOI] [PubMed] [Google Scholar]
  5. Ganz T., Selsted M. E., Lehrer R. I. Antimicrobial activity of phagocyte granule proteins. Semin Respir Infect. 1986 Jun;1(2):107–117. [PubMed] [Google Scholar]
  6. Ganz T., Selsted M. E., Szklarek D., Harwig S. S., Daher K., Bainton D. F., Lehrer R. I. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985 Oct;76(4):1427–1435. doi: 10.1172/JCI112120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grewal A. S., Rouse B. T., Babiuk L. A. Mechanisms of resistant of herpesviruses: comparison of the effectiveness of different cell types in mediating antibody-dependent cell-mediated cytotoxicity. Infect Immun. 1977 Mar;15(3):698–703. doi: 10.1128/iai.15.3.698-703.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grewal A. S., Rouse B. T. Destruction of virus infected cells by neutrophils and complement. Experientia. 1980 Mar 15;36(3):352–354. doi: 10.1007/BF01952322. [DOI] [PubMed] [Google Scholar]
  9. Hill T. J., Field H. J., Blyth W. A. Acute and recurrent infection with herpes simplex virus in the mouse: a model for studying latency and recurrent disease. J Gen Virol. 1975 Sep;28(3):341–353. doi: 10.1099/0022-1317-28-3-341. [DOI] [PubMed] [Google Scholar]
  10. Jordan G. W., Seet E. C. Antiviral effects of amphotericin B methyl ester. Antimicrob Agents Chemother. 1978 Feb;13(2):199–204. doi: 10.1128/aac.13.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lehrer R. I., Daher K., Ganz T., Selsted M. E. Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes. J Virol. 1985 May;54(2):467–472. doi: 10.1128/jvi.54.2.467-472.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lehrer R. I., Ladra K. M., Hake R. B. Nonoxidative fungicidal mechanisms of mammalian granulocytes: demonstration of components with candidacidal activity in human, rabbit, and guinea pig leukocytes. Infect Immun. 1975 Jun;11(6):1226–1234. doi: 10.1128/iai.11.6.1226-1234.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lehrer R. I., Szklarek D., Ganz T., Selsted M. E. Correlation of binding of rabbit granulocyte peptides to Candida albicans with candidacidal activity. Infect Immun. 1985 Jul;49(1):207–211. doi: 10.1128/iai.49.1.207-211.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McSorley J., Shapiro L., Brownstein M. H., Hsu K. C. Herpes simplex and varicella-zoster: comparative histopathology of 77 cases. Int J Dermatol. 1974 Mar-Apr;13(2):69–75. doi: 10.1111/j.1365-4362.1974.tb01769.x. [DOI] [PubMed] [Google Scholar]
  15. Oleske J. M., Ashman R. B., Kohl S., Shore S. L., Starr S. E., Wood P., Nahmias A. J. Human polymorphonuclear leucocytes as mediators of antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells. Clin Exp Immunol. 1977 Mar;27(3):446–453. [PMC free article] [PubMed] [Google Scholar]
  16. Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
  17. Rouse B. T., Babiuk L. A., Henson P. M. Neutrophils in antiviral immunity: inhibition of virus replication by a mediator produced by bovine neutrophils. J Infect Dis. 1980 Feb;141(2):223–232. doi: 10.1093/infdis/141.2.223. [DOI] [PubMed] [Google Scholar]
  18. Rouse B. T. Role of neutrophils in antiviral immunity. Adv Exp Med Biol. 1981;137:263–278. [PubMed] [Google Scholar]
  19. Rouse B. T., Wardley R. C., Babiuk L. A., Mukkur T. K. The role of neutrophils in antiviral defense--in vitro studies on the mechanism of antiviral inhibition. J Immunol. 1977 Jun;118(6):1957–1961. [PubMed] [Google Scholar]
  20. Russell A. S., Miller C. A possible role for polymorphonuclear leucocytes in the defence against recrudescent herpes simplex virus infection in man. Immunology. 1978 Mar;34(3):371–378. [PMC free article] [PubMed] [Google Scholar]
  21. Sands J., Auperin D., Snipes W. Extreme sensitivity of enveloped viruses, including herpes simplex, to long-chain unsaturated monoglycerides and alcohols. Antimicrob Agents Chemother. 1979 Jan;15(1):67–73. doi: 10.1128/aac.15.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Selsted M. E., Brown D. M., DeLange R. J., Lehrer R. I. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem. 1983 Dec 10;258(23):14485–14489. [PubMed] [Google Scholar]
  23. Selsted M. E., Harwig S. S., Ganz T., Schilling J. W., Lehrer R. I. Primary structures of three human neutrophil defensins. J Clin Invest. 1985 Oct;76(4):1436–1439. doi: 10.1172/JCI112121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Siebens H., Tevethia S. S., Babior B. M. Neutrophil-mediated antibody-dependent killing of herpes-simplex-virus-infected cells. Blood. 1979 Jul;54(1):88–94. [PubMed] [Google Scholar]
  25. Spitznagel J. K. Nonoxidative antimicrobial reactions of leukocytes. Contemp Top Immunobiol. 1984;14:283–343. doi: 10.1007/978-1-4757-4862-8_10. [DOI] [PubMed] [Google Scholar]
  26. Stevens D. A., Ferrington R. A., Jordan G. W., Merigan T. C. Cellular events in zoster vesicles: relation to clinical course and immune parameters. J Infect Dis. 1975 May;131(5):509–515. doi: 10.1093/infdis/131.5.509. [DOI] [PubMed] [Google Scholar]