Translational readthrough of an amber termination codon during synthesis of feline leukemia virus protease (original) (raw)

Abstract

Feline leukemia virus contains a protease which apparently has the same specificity as murine leukemia virus protease. It cleaves in vitro the Pr65gag of Gazdar-mouse sarcoma virus into the constituent p15, p12, p30, and p10 proteins. We purified the protease and determined its NH2-terminal amino acid sequence (the first 15 residues). Alignment of this amino acid sequence with the nucleotide sequence (I. Laprevotte, A. Hampe, C. H. Sherr, and F. Galibert, J. Virol. 50:884-894, 1984) reveals that the protease is a viral-coded enzyme and is located at the 5' end of the pol gene. As previously found for murine leukemia virus (Y. Yoshinaka, I. Katoh, T. D. Copeland, and S. Oroszlan, Proc. Natl. Acad. Sci. U.S.A. 82:1618-1622, 1985), feline leukemia virus protease is synthesized through in-frame suppression of the gag amber termination codon by insertion of a glutamine in the fifth position, and the first four amino acids are derived from the gag gene.

870

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins J. F., Gesteland R. F. Resolution of the discrepancy between a gene translation--termination codon and the deduced sequence for release of the encoded polypeptide. Eur J Biochem. 1983 Dec 15;137(3):509–516. doi: 10.1111/j.1432-1033.1983.tb07855.x. [DOI] [PubMed] [Google Scholar]
  2. Baltimore D. Tumor viruses: 1974. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 2):1187–1200. doi: 10.1101/sqb.1974.039.01.137. [DOI] [PubMed] [Google Scholar]
  3. Copeland T. D., Morgan M. A., Oroszlan S. Complete amino acid sequence of the basic nucleic acid binding protein of feline leukemia virus. Virology. 1984 Feb;133(1):137–145. doi: 10.1016/0042-6822(84)90432-x. [DOI] [PubMed] [Google Scholar]
  4. Fox T. D., Weiss-Brummer B. Leaky +1 and -1 frameshift mutations at the same site in a yeast mitochondrial gene. Nature. 1980 Nov 6;288(5786):60–63. doi: 10.1038/288060a0. [DOI] [PubMed] [Google Scholar]
  5. Gazdar A. F., Phillips L. A., Sarma P. S., Peebles P. T., Chopra H. C. Presence of sarcoma genome in a "non-infectious" mammalian virus. Nat New Biol. 1971 Nov 17;234(46):69–72. doi: 10.1038/newbio234069a0. [DOI] [PubMed] [Google Scholar]
  6. Hatfield D. L., Dudock B. S., Eden F. C. Characterization and nucleotide sequence of a chicken gene encoding an opal suppressor tRNA and its flanking DNA segments. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4940–4944. doi: 10.1073/pnas.80.16.4940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Henderson L. E., Copeland T. D., Oroszlan S. Separation of amino acid phenylthiohydantoins by high-performance liquid chromatography on phenylalkyl support. Anal Biochem. 1980 Feb;102(1):1–7. doi: 10.1016/0003-2697(80)90307-3. [DOI] [PubMed] [Google Scholar]
  8. Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981 Aug 10;256(15):7990–7997. [PubMed] [Google Scholar]
  9. Laprevotte I., Hampe A., Sherr C. J., Galibert F. Nucleotide sequence of the gag gene and gag-pol junction of feline leukemia virus. J Virol. 1984 Jun;50(3):884–894. doi: 10.1128/jvi.50.3.884-894.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Miller A. D., Verma I. M. Two base changes restore infectivity to a noninfectious molecular clone of Moloney murine leukemia virus (pMLV-1). J Virol. 1984 Jan;49(1):214–222. doi: 10.1128/jvi.49.1.214-222.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miller J. H., Albertini A. M. Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol. 1983 Feb 15;164(1):59–71. doi: 10.1016/0022-2836(83)90087-6. [DOI] [PubMed] [Google Scholar]
  12. Morgan M. A., Copeland T. D., Oroszlan S. Structural and antigenic analysis of the nucleic acid-binding proteins of bovine and feline leukemia viruses. J Virol. 1983 Apr;46(1):177–186. doi: 10.1128/jvi.46.1.177-186.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Oroszlan S., Copeland T. D. Primary structure and processing of gag and env gene products of human T-cell leukemia viruses HTLV-ICR and HTLV-IATK. Curr Top Microbiol Immunol. 1985;115:221–233. doi: 10.1007/978-3-642-70113-9_14. [DOI] [PubMed] [Google Scholar]
  14. Rickard C. G., Post J. E., Noronha F., Barr L. M. A transmissible virus-induced lymphocytic leukemia of the cat. J Natl Cancer Inst. 1969 Jun;42(6):987–1014. [PubMed] [Google Scholar]
  15. Shinnick T. M., Lerner R. A., Sutcliffe J. G. Nucleotide sequence of Moloney murine leukaemia virus. Nature. 1981 Oct 15;293(5833):543–548. doi: 10.1038/293543a0. [DOI] [PubMed] [Google Scholar]
  16. Yoshinaka Y., Katoh I., Copeland T. D., Oroszlan S. Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1618–1622. doi: 10.1073/pnas.82.6.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yoshinaka Y., Luftig R. B. Properties of a P70 proteolytic factor of murine leukemia viruses. Cell. 1977 Nov;12(3):709–719. doi: 10.1016/0092-8674(77)90271-9. [DOI] [PubMed] [Google Scholar]
  18. Yoshinaka Y., Luftig R. B. p65 of Gazdar murine sarcoma viruses contains antigenic determinants from all four of the murine leukemia virus (MuLV) gag polypeptides (p15, p12, p30, and p10) and can be cleaved in vitro by the MuLV proteolytic activity. Virology. 1982 Apr 30;118(2):380–388. doi: 10.1016/0042-6822(82)90357-9. [DOI] [PubMed] [Google Scholar]