Differences in susceptibility of inbred mice to Bacillus anthracis (original) (raw)

Abstract

Animal species differ in their resistance both to infection by Bacillus anthracis and to anthrax toxin. A mouse model was developed to study the basis of the host differences and the pathogenesis of infection. When mice were infected with the virulent B. anthracis strain Vollum 1B, low 50% lethal dose (LD50) values (5 to 30 spores) were found for all 10 strains of inbred mice tested. However, analysis of time-to-death data revealed significant differences among the strains, which could be divided into three groups: most susceptible (A/J and DBA/2J); least susceptible (CBA/J, BALB/cJ, and C57BR/cdJ); and intermediate (the remaining five strains). In contrast, the mice were distinctly susceptible or resistant to lethal infection by the toxigenic, nonencapsulated Sterne vaccine strain. The LD50 for the susceptible A/J and DBA/2J mice was approximately 10(3) spores of the Sterne strain, whereas the remaining eight relatively resistant strains were killed only by 10(6) or more spores. F1 hybrid and backcross studies suggested that resistance to the Sterne strain is determined by a single dominant gene or gene complex. Mice lethally infected with B. anthracis showed an acute course of infection, characterized by extensive gelatinous edema and large concentrations of bacilli in the blood and organs (e.g., 10(9) CFU/g of spleen). The susceptibility of A/J and CBA/J mice to intravenously injected anthrax toxin components appeared to differ from their susceptibility to infection. The toxin LD50 values for both strains were similar. However, CBA/J mice died sooner than did A/J mice, with mean time to death of 0.9 and 3.7 days, respectively, in mice given 4 LD50 of toxin. The mouse model appears to be useful in studies on host resistance to anthrax and on the pathogenesis of the infection.

795

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALEKSANDROV N. I., GEFEN N. E., GARIN N. S., GAPOCHKO K. G., SERGEV V. M., SMIRNOV M. S., TAMARIN A. L., SHLIAKHOV E. N. [Experience in massive aerogenic vaccination against anthrax]. Voen Med Zh. 1959 Aug;8:27–32. [PubMed] [Google Scholar]
  2. Abalakin V. A., Cherkasskii B. L. Ispol'zovanie myshei inbrednykh linii kak modeli dlia indikatsii i differentsiatsii shtammov B. anthracis. Zh Mikrobiol Epidemiol Immunobiol. 1978 Feb;(2):146–147. [PubMed] [Google Scholar]
  3. BEALL F. A., TAYLOR M. J., THORNE C. B. Rapid lethal effect in rats of a third component found upon fractionating the toxin of Bacillus anthracis. J Bacteriol. 1962 Jun;83:1274–1280. doi: 10.1128/jb.83.6.1274-1280.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boraschi D., Meltzer M. S. Defective tumoricidal capacity of macrophages from A/J mice. II. Comparison of the macrophage cytotoxic defect of A/J mice with that of lipid A-unresponsive C3H/HeJ mice. J Immunol. 1979 Apr;122(4):1592–1597. [PubMed] [Google Scholar]
  5. Brachman P. S. Anthrax. Ann N Y Acad Sci. 1970 Oct 30;174(2):577–582. doi: 10.1111/j.1749-6632.1970.tb45583.x. [DOI] [PubMed] [Google Scholar]
  6. Cerquetti M. C., Sordelli D. O., Ortegon R. A., Bellanti J. A. Impaired lung defenses against Staphylococcus aureus in mice with hereditary deficiency of the fifth component of complement. Infect Immun. 1983 Sep;41(3):1071–1076. doi: 10.1128/iai.41.3.1071-1076.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ezzell J. W., Ivins B. E., Leppla S. H. Immunoelectrophoretic analysis, toxicity, and kinetics of in vitro production of the protective antigen and lethal factor components of Bacillus anthracis toxin. Infect Immun. 1984 Sep;45(3):761–767. doi: 10.1128/iai.45.3.761-767.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fernelius A. L., Dearmon I. A., Klein F., Lincoln R. E. COMPARISON OF GRADED AND QUANTAL VIRULENCE TESTS FOR BACILLUS ANTHRACIS SPORES. J Bacteriol. 1960 Apr;79(4):594–600. doi: 10.1128/jb.79.4.594-600.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gervais F., Stevenson M., Skamene E. Genetic control of resistance to Listeria monocytogenes: regulation of leukocyte inflammatory responses by the Hc locus. J Immunol. 1984 Apr;132(4):2078–2083. [PubMed] [Google Scholar]
  10. Green B. D., Battisti L., Koehler T. M., Thorne C. B., Ivins B. E. Demonstration of a capsule plasmid in Bacillus anthracis. Infect Immun. 1985 Aug;49(2):291–297. doi: 10.1128/iai.49.2.291-297.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gros P., Skamene E., Forget A. Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol. 1981 Dec;127(6):2417–2421. [PubMed] [Google Scholar]
  12. HARKER J. E. Diurnal rhythms in periplaneta americana L. Nature. 1954 Apr 10;173(4406):689–690. doi: 10.1038/173689a0. [DOI] [PubMed] [Google Scholar]
  13. Hachisuka Y. Germination of B. anthracis spores in the peritoneal cavity of rats and establishment of anthrax. Jpn J Microbiol. 1969 Jun;13(2):199–207. doi: 10.1111/j.1348-0421.1969.tb00454.x. [DOI] [PubMed] [Google Scholar]
  14. Hambleton P., Carman J. A., Melling J. Anthrax: the disease in relation to vaccines. Vaccine. 1984 Jun;2(2):125–132. doi: 10.1016/0264-410x(84)90003-3. [DOI] [PubMed] [Google Scholar]
  15. Hormaeche C. E. Genetics of natural resistance to salmonellae in mice. Immunology. 1979 Jun;37(2):319–327. [PMC free article] [PubMed] [Google Scholar]
  16. Jones W. I., Jr, Klein F., Walker J. S., Mahlandt B. G., Dobbs J. P., Lincoln R. E. In vivo growth and distribution of anthrax bacilli in resistant, susceptible, and immunized hosts. J Bacteriol. 1967 Sep;94(3):600–608. doi: 10.1128/jb.94.3.600-608.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. KEPPIE J., HARRIS-SMITH P. W., SMITH H. THE CHEMICAL BASIS OF THE VIRULENCE OF BACILLUS ANTHRACIS. IX. ITS AGGRESSINS AND THEIR MODE OF ACTION. Br J Exp Pathol. 1963 Aug;44:446–453. [PMC free article] [PubMed] [Google Scholar]
  18. KEPPIE J., SMITH H., HARRIS-SMITH P. W. The chemical basis of the virulence of Bacillus anthracis. III. The role of the terminal bacteraemia in death of guinea-pigs from anthrax. Br J Exp Pathol. 1955 Jun;36(3):315–322. [PMC free article] [PubMed] [Google Scholar]
  19. KLEIN F., DEARMON I. A., Jr, LINCOLN R. E., MAHLANDT B. G., FERNELIUS A. L. Immunological studies of anthrox. II. Levels of immunity against Bacillus anthracis obtained with protective antigen and live vaccine. J Immunol. 1962 Jan;88:15–19. [PubMed] [Google Scholar]
  20. KLEIN F., HAINES B. W., MAHLANDT B. G., DEARMON I. A., Jr, LINCOLN R. E. DUAL NATURE OF RESISTANCE MECHANISMS AS REVEALED BY STUDIES OF ANTHRAX SEPTICEMIA. J Bacteriol. 1963 May;85:1032–1038. doi: 10.1128/jb.85.5.1032-1038.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leighton T. J., Doi R. H. The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis. J Biol Chem. 1971 May 25;246(10):3189–3195. [PubMed] [Google Scholar]
  22. Lincoln R. E., Walker J. S., Klein F., Rosenwald A. J., Jones W. I., Jr Value of field data for extrapolation in anthrax. Fed Proc. 1967 Sep;26(5):1558–1562. [PubMed] [Google Scholar]
  23. Nasseri M., Modabber F. Z. Generalized infection and lack of delayed hypersensitivity in BALB/c mice infected with Leishmania tropica major. Infect Immun. 1979 Nov;26(2):611–614. doi: 10.1128/iai.26.2.611-614.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Brien J., Friedlander A., Dreier T., Ezzell J., Leppla S. Effects of anthrax toxin components on human neutrophils. Infect Immun. 1985 Jan;47(1):306–310. doi: 10.1128/iai.47.1.306-310.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ooi Y. M., Colten H. R. Genetic defect in secretion of complement C5 in mice. Nature. 1979 Nov 8;282(5735):207–208. doi: 10.1038/282207a0. [DOI] [PubMed] [Google Scholar]
  26. RHIAN M., RILEY J. M., WOLFE V. L., SIMMONS A. H. Change in virulence of Bacillus anthracis spores as affected by solids and challenge route. J Infect Dis. 1963 Mar-Apr;112:187–193. doi: 10.1093/infdis/112.2.187. [DOI] [PubMed] [Google Scholar]
  27. Rosenstreich D. L., Weinblatt A. C., O'Brien A. D. Genetic control of resistance to infection in mice. Crit Rev Immunol. 1982 Jun;3(4):263–330. [PubMed] [Google Scholar]
  28. SAWYER W. D., KUEHNE R. W., GOCHENOUR W. S., Jr EFFECT OF EGG YOLK AND PHOSPHATIDES ON ANTHRAX INFECTION OF RATS AND GUINEA PIGS. Proc Soc Exp Biol Med. 1965 Jan;118:105–108. doi: 10.3181/00379727-118-29769. [DOI] [PubMed] [Google Scholar]
  29. Skamene E. Genetic regulation of host resistance to bacterial infection. Rev Infect Dis. 1983 Sep-Oct;5 (Suppl 4):S823–S832. doi: 10.1093/clinids/5.supplement_4.s823. [DOI] [PubMed] [Google Scholar]
  30. Smith H., Stoner H. B. Anthrax toxic complex. Fed Proc. 1967 Sep;26(5):1554–1557. [PubMed] [Google Scholar]
  31. THORNE C. B., MOLNAR D. M., STRANGE R. E. Production of toxin in vitro by Bacillus anthracis and its spearation into two components. J Bacteriol. 1960 Mar;79:450–455. doi: 10.1128/jb.79.3.450-455.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]