Etoposide-incorporated tripalmitin nanoparticles with different surface charge: Formulation, characterization, radiolabeling, and biodistribution studies (original) (raw)
Abstract
Etoposide-incorporated tripalmitin nanoparticles with negative (ETN) and positive charge (ETP) were prepared by melt emulsification and high-pressure homogenization techniques. Spray drying of nanoparticles led to free flowing powder with excellent redispersibility. The nanoparticles were characterized by size analysis, zeta potential measurements, and scanning electron microscopy. The mean diameter of ETN and ETP nanoparticles was 391 nm and 362 nm, respectively, and the entrapment efficiency was more than 96%. Radiolabeling of etoposide and nanoparticles was performed with Technetium-99m (99mTc) with high labeling efficiency and in vitro stability. The determination of binding affinity of99mTc-labeled complexes by diethylene triamine penta acetic acid (DTPA) and cysteine challenge test confirmed low transchelation of99mTc-labeled complexes and high in vitro stability. Pharmacokinetic data of radiolabeled etoposide, ETN, and ETP nanoparticles in rats reveal that positively charged nanoparticles had high blood concentrations and prolonged blood residence time. Biodistribution studies of99mTc-labeled complexes were performed after intravenous administration in mice. Both ETN and ETP nanoparticles showed significantly lower uptake by organs of the reticuloendothelial system such as liver and spleen (P<.001) compared with etoposide. The ETP nanoparticles showed a relatively high distribution to bone and brain (14-fold higher than etoposide and ETN at 4 hours postinjection) than ETN nanoparticles. The ETP nanoparticles with long circulating property could be a beneficial delivery system for targeting to tumors by Enhanced Permeability and Retention effect and to brain.
Keywords: etoposide, tripalmitin, Technetium-99m, long circulating nanoparticles, radiolabeling, biodistribution
Full Text
The Full Text of this article is available as a PDF (226.6 KB).
References
- 1.Muller RH, Olbrich C. Solid lipid nanoparticles: Phagocytic uptake, in vitro cytotoxicity and in vitro biodegradation. Drugs Made Ger. 1999;42:49–53. [Google Scholar]
- 2.Lim SJ, Kim CK. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int J Pharm. 2002;243:135–146. doi: 10.1016/S0378-5173(02)00269-7. [DOI] [PubMed] [Google Scholar]
- 3.Freitas C, Muller RH. Spray-drying of solid lipid nanoparticles (SLNTM) Eur J Pharm Biopharm. 1998;46:145–151. doi: 10.1016/S0939-6411(97)00172-0. [DOI] [PubMed] [Google Scholar]
- 4.Magenheim B, Levy MY, Benita S. A new in vitro technique for evaluation of drug release profile from colloidal carriers-ultrafiltration technique at low pressure. Int J Pharm. 1993;94:115–123. doi: 10.1016/0378-5173(93)90015-8. [DOI] [Google Scholar]
- 5.Muller RH, Ruhl D, Runge S, Schulze-Foster K, Mehnert W. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm Res. 1997;14:458–462. doi: 10.1023/A:1012043315093. [DOI] [PubMed] [Google Scholar]
- 6.zur Muhlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery-Drug release and release mechanism. Eur J Pharm Biopharm. 1998;45:149–155. doi: 10.1016/S0939-6411(97)00150-1. [DOI] [PubMed] [Google Scholar]
- 7.Muller RH, Maassen S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with Poloxamine 908 and Poloxamer 407. J Drug Target. 1996;4:161–170. doi: 10.3109/10611869609015973. [DOI] [PubMed] [Google Scholar]
- 8.Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery. II. Drug incorporation and physicochemical characterization. J Microencapsul. 1999;16:205–213. doi: 10.1080/026520499289185. [DOI] [PubMed] [Google Scholar]
- 9.Unruh T, Bunjes H, Westesen K, Koch MHJ. Investigations on the melting behaviour of triglyceride nanoparticles. Colloid Polym Sci. 2001;279:398–403. doi: 10.1007/s003960000436. [DOI] [Google Scholar]
- 10.Cavalli R, Caputo O, Carlotti ME, Trotta M, Scarnecchia C, Gasco MR. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int J Pharm. 1997;148:47–54. doi: 10.1016/S0378-5173(96)04822-3. [DOI] [Google Scholar]
- 11.Siekmann B, Westesen S. Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Colloids Surf B Biointerfaces. 1994;3:159–175. doi: 10.1016/0927-7765(94)80063-4. [DOI] [Google Scholar]
- 12.Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release. 1997;48:223–236. doi: 10.1016/S0168-3659(97)00046-1. [DOI] [Google Scholar]
- 13.Bunjes H, Drechsler M, Koch MHJ, Westesen K. Incorporation of the model drug Ubidecarenone into the solid lipid nanoparticles. Pharm Res. 2001;18:287–293. doi: 10.1023/A:1011042627714. [DOI] [PubMed] [Google Scholar]
- 14.Bunjes H, Koch MHJ, Westesen K. Effect of surfactants on the crystallization and polymorphism of lipid nanoparticles. Prog Colloid Polym Sci. 2002;121:7–10. doi: 10.1007/3-540-47822-1_2. [DOI] [Google Scholar]
- 15.Bunjes H, Koch MHJ, Westesen K. Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J Pharm Sci. 2003;92:1509–1520. doi: 10.1002/jps.10413. [DOI] [PubMed] [Google Scholar]
- 16.Bunjes H, Koch MHJ, Westesen K. Effect of particle size on colloidal solid triglycerides. Langmuir. 2000;16:5234–5241. doi: 10.1021/la990856l. [DOI] [Google Scholar]
- 17.Mehnert W, Mader K. Solid lipid nanoparticles-production, characterization and applications. Adv Drug Del Rev. 2001;47:165–196. doi: 10.1016/S0169-409X(01)00105-3. [DOI] [PubMed] [Google Scholar]
- 18.Muller RH, Mader K, Gohla S. Solid lipid nanoparticles for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–177. doi: 10.1016/S0939-6411(00)00087-4. [DOI] [PubMed] [Google Scholar]
- 19.Yang S, Zhu J, Lu Y, Liang B, Yang C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res. 1999;16:751–757. doi: 10.1023/A:1018888927852. [DOI] [PubMed] [Google Scholar]
- 20.Penkler L, Muller RH, Runge SA, Ravelli V. Pharmaceutical cyclosporine formulation with improved biopharmaceutical properties, improved physical quality and greater stability, and method for producing said formulation. WO 99/56733. 1999.
- 21.Zara GP, Cavalli R, Fundaro A, Bargoni A, Caputo O, Gasco MR. Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres (SLN) Pharm Res. 1999;40:281–286. doi: 10.1006/phrs.1999.0509. [DOI] [PubMed] [Google Scholar]
- 22.Jaeghere FD, Doelker E, Gurny R. Nanoparticles. In: Mathiowitz E, editor. Encyclopedia of Controlled Drug Delivery. New York, NY: John Wiley; 1999. pp. 641–664. [Google Scholar]
- 23.Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochim Biophys Acta. 1992;1113:171–199. doi: 10.1016/0304-4157(92)90038-C. [DOI] [PubMed] [Google Scholar]
- 24.Senior JH. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst. 1987;3:123–193. [PubMed] [Google Scholar]
- 25.Arulsudar N, Subramanian N, Mishra P, Sharma RK, Murthy RSR. Preparation, characterization and biodistribution of99mTc-labeled liposome encapsulated cyclosporine. J Drug Target. 2003;11:187–196. doi: 10.1080/10611860310001615415. [DOI] [PubMed] [Google Scholar]
- 26.Chamberlain M. Recurrent brainstem gliomas treated with oral VP-16. Neuro-oncol. 1993;15:133–139. doi: 10.1007/BF01053934. [DOI] [PubMed] [Google Scholar]
- 27.Ashley D, Meier L, Kerby T, et al. Response of recurrent medulloblastoma to low-dose oral etoposide. J Clin Oncol. 1996;14:1922–1927. doi: 10.1200/JCO.1996.14.6.1922. [DOI] [PubMed] [Google Scholar]
- 28.Subramanian N, Arulsudar N, Chuttani K, Mishra P, Sharma RK, Murthy RSR. Radiolabeling, biodistribution and tumor imaging of stealth liposomes containing methotrexate. J Alasbimn. 2003;6(22):6–6. [Google Scholar]
- 29.Arulsudar N, Subramanian N, Mishra P, Chuttani K, Sharma RK, Murthy RSR. Preparation, characterization and biodistribution of Technetium-99m-labeled leuprolide acetate-loaded liposomes in Ehrlich Ascites tumor bearing mine. The AAPS Journal. 2004;6:E5–E5. doi: 10.1208/ps060105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Richardson VJ, Jeyasingh K, Jewkes RF. Properties of [99mTc] technetium labeled liposomes in normal and tumor bearing rats. Biochem Soc Trans. 1977;5:290–291. doi: 10.1042/bst0050290. [DOI] [PubMed] [Google Scholar]
- 31.Theobald AE. Theory and practice. In: Sampson CB, editor. Textbook of Radiopharmacy. New York, NY: Gordon and Breach; 1990. pp. 127–129. [Google Scholar]
- 32.Mishra AK, Iznaga-Escobar N, Figueredo R, et al. Preparation and comparative evaluation of99mTc-labeled 2-Iminothiolane modified antibodies and CITC-DTPA immunoconjugates of anti-EGF-receptor antibodies. Methods Find Exp Clin Pharmacol. 2002;24:653–660. doi: 10.1358/mf.2002.24.10.802314. [DOI] [PubMed] [Google Scholar]
- 33.Siekmann B, Westesen K. Submicro-sized parenteral carrier systems based on solid lipids. Pharm Pharmacol Lett. 1992;1:123–126. [Google Scholar]
- 34.Westesen K, Siekmann B, Koch MHJ. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int J Pharm. 1993;93:189–199. doi: 10.1016/0378-5173(93)90177-H. [DOI] [Google Scholar]
- 35.Westesen K, Siekmann B. Investigations on the gel formation of phospholipids stabilized solid lipid nanoparticles. Int J Pharm. 1997;151:35–45. doi: 10.1016/S0378-5173(97)04890-4. [DOI] [Google Scholar]
- 36.Siekmann B, Westesen K. Melt-homogenized solid lipid nanoparticles stabilized by the nonionic surfactant tyloxapol. I. Preparation and particle size determination. Pharm Pharmacol Lett. 1994;3:194–197. [Google Scholar]
- 37.Aoki H, Sun C, Fuji K, Miyajima K. Disposition kinetics of liposomes modified with synthetic aminoglycolipids in rats. Int J Pharm. 1995;115:183–191. doi: 10.1016/0378-5173(94)00252-Z. [DOI] [Google Scholar]
- 38.Nabar SJ, Nadkarni GD. Effect of size and charge of liposomes on biodistribution of encapsulated99mTc-DTPA in rats. Ind J Pharmacol. 1998;30:199–202. [Google Scholar]
- 39.Levchenko, et al. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm. 2002;240:95–102. doi: 10.1016/S0378-5173(02)00129-1. [DOI] [PubMed] [Google Scholar]
- 40.Sengupta S, Tyagi P, Velpandian T, Gupta YK, Gupta SK. Etoposide encapsulated in positively charged liposomes: pharmacokinetic studies in mice and formulation stability studies. Pharmacol Res. 2000;42:459–464. doi: 10.1006/phrs.2000.0714. [DOI] [PubMed] [Google Scholar]
- 41.Yu HY, Lin CY. Uptake of charged liposomes by the rat liver. J Formos Med Assoc. 1997;96:409–413. [PubMed] [Google Scholar]
- 42.Hernandez-Caselles T, Villalain J, Gomez-Fernandez JC. Influence of liposome charge and composition on their interaction with human blood serum proteins. Mol Cell Biochem. 1993;120:119–126. doi: 10.1007/BF00926084. [DOI] [PubMed] [Google Scholar]
- 43.Duncan R. Polymer conjugates for tumor targeting and intracytoplasmic delivery. The EPR effect as a common gateway? Pharm Sci Tech Today. 1999;2:441–449. doi: 10.1016/S1461-5347(99)00211-4. [DOI] [PubMed] [Google Scholar]